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Dynamic phase transition for decoding algorithms
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The state-of-the-art error correcting codes are based on large random constructions~random graphs, random
permutations, etc.! and are decoded by linear-time iterative algorithms. Because of these features, they are
remarkable examples of diluted mean-field spin glasses, both from the static and dynamic points of view. We
analyze the behavior of decoding algorithms by mapping them onto statistical-physics models. This allows us
to understand the intrinsic~i.e., algorithm independent! features of this behavior.
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I. INTRODUCTION

Recently there has been some interest in studying c
plexity phase transitions, i.e., abrupt changes in the com
tational complexity of hard combinatorial problems as so
control parameter is varied@1#. These phenomena ar
thought to be somehow related to the physics of glassy
tems, where the physical dynamics experiences a dram
slowing down as the temperature is lowered@2#.

Complexity is a central issue also in coding theory@3,4#.
Coding theory@5–7# deals with the problem of communica
ing information reliably through an unreliable channel
communication. This task is accomplished by making use
error correcting codes. In 1948 Shannon@8# proved that al-
most any error correcting code allows to communicate w
out errors, as long as the rate of transmitted information
kept below thecapacityof the channel. However decoding
an intractable problem for almost any code. Coding theor
therefore a rich source of interesting computational pr
lems.

On the other hand it is known that error correcting cod
can be mapped onto disordered spin models@9–13#. Remark-
ably there has recently been a revolution in coding the
which has lead to the invention of new and very power
codes based on random constructions: turbo codes@14#, low
density parity check codes~LDPCC! @15,16#, repetition ac-
cumulated codes@17#, etc. As a matter of fact, equivalen
spin models have been intensively studied in the last
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years. These are diluted spin glasses, i.e., spin glasse
random~hyper!graphs@18–21#.

The new codes are decoded by using approximate it
tive algorithms, which are closely related to the cavity a
proach to mean-field spin glasses@22,23#. We think therefore
that a close investigation of these systems from a statis
physics point of view, having in mind complexity~i.e., dy-
namical! issues, can be of great theoretical interest.1

Let us briefly recall the general setting of coding theo
@5# in order to fix a few notations~cf. Fig. 1 for a pictorial
description!. A source of information produces a stream
symbols. Let us assume, for instance, that the source
duces unbiased random bits. The stream is partitioned
blocksof lengthNblock. Each of the possible 2Nblock blocks is
mapped to acode word~i.e., a sequence of bits! of length
N.Nblock by theencoderand transmitted through the chan
nel. An error correcting code is therefore defined either a
mapping $0,1%Nblock→$0,1%N, or as a list of 2Nblock code
words. Therate of the code is defined asR5Nblock/N.

Let us denote2 the transmitted code word byxO in

5@x1
in , . . . ,xN

in#T. Due to the noise, a different sequence
symbols xOout5@x1

out, . . . ,xN
out#T is received. The decoding

problem is to inferxO in, givenxOout, the definition of the code
and the properties of the noisy channel.

It is useful to summarize the general picture whi

1The reader is urged to consult Refs.@24–33# for a statistical
mechanics analysis of the optimal decoding~i.e., of static issues!.

2We shall denote transmitted and received symbols by typogra
characters, with the exception of symbols in$11,21%. In this case
we use the physicists notation and denote such symbols bys.
When considering binary symbols we will often pass from thex
notation to thes notation, the correspondences5(21)x being
understood. Finally vectors of lengthN will be always denoted by
underlined characters: e.g.,xO or sI .
©2002 The American Physical Society20-1
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emerges from our work. We shall focus on Gallager co
~both regular and irregular!. The optimal decoding strateg
~maximum-likelihood decoding! is able to recover the trans
mitted message below some noise threshold:p,pc . Itera-
tive, linear-time algorithms get stuck~in general! at a lower
noise level, and are successful only forp,pd

(alg.) , with
pd

(alg.)<pc . In general, the ‘‘dynamical’’ thresholdpd
(alg.) de-

pends upon the details of the algorithm. However, it seem
be always smaller than some universal~although code-
dependent! valuepd . Moreover, some ‘‘optimal’’ linear-time
algorithms are successful up topd @i.e., pd

(alg.)5pd]. The uni-
versal thresholdpd coincides with the dynamical transitio
@2# of the corresponding spin model.

The plan of the paper is the following. In Sec. II w
introduce LDPCC, focusing on Gallager’sensembles, and we
describemessage-passingdecoding algorithms. We briefly
recall the connection between these algorithms and the
ity equations for mean-field spin glasses. In Sec. III we
fine a spin model which describes the decoding problem,
introduce the replica formalism. In Sec. IV we analyze t
model for a particular choice of the noisy channel~thebinary
erasure channel!. In this case calculations can be fully e
plicit and the results are particularly clear. Then, in Sec.
we address the general case. Finally we draw our conclus
in Sec. VI. The Appendixes collect some details of our co
putations.

II. ERROR CORRECTING CODES, DECODING
ALGORITHMS, AND CAVITY EQUATIONS

This section introduces the reader to some basic termi
ogy in coding theory. In the first part we define someen-
semblesof codes, namely,regular and irregular LDPCC. In
the second one we describe a class of iterative decodin
gorithms. These algorithms have a very clear physical in
pretation, which we briefly recall. Finally we explain ho
these algorithms are analyzed in the coding theory com
nity. This section does not contain any original result. T
interested reader may consult Refs.@7,15,23,34# for further
details.

A. Encoding

Low density parity check codes are defined by assignin
binary N3M matrix H5$Hi j %, with Hi j P$0,1%. All the
code words are required to satisfy the constraint

HxO50~mod2!. ~2.1!

FIG. 1. A schematic description of how error correcting cod
work.
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The matrixH is called theparity check matrixand theM
equations summarized in Eq.~2.1! are theparity check equa-
tions~or, for short,parity checks!. If the matrixH has rankM
~this is usually the case!, the rate isR512M /N.

There exists a nice graphic representation of Eq.~2.1!
which is often used in the coding theory community: t
Tanner graphrepresentation@35,36#. One constructs a bipar
tite graph by associating a left-hand node with each one
the N variables, and a right-hand node with each one of
M parity checks. An edge is drawn between thevariable
nodei and the parity check nodea if and only if the variable
xi appears with a nonzero coefficient in the parity che
equationa. We refer to Fig. 2 for a simple example.

In general, one considers ensembles of codes by defi
a random construction of the parity check matrix. One of
simplest ensembles is given by regular (k,l ) Gallager codes.
In this case one chooses the matrixH randomly among all
the N3M matrices havingk nonzero entries per row, andl
per column.

Amazingly good codes@37–39# were obtained by slightly
more sophisticated irregular constructions. In this case
assigns the distributions of the degrees of parity check no
and variable nodes in the Tanner graph. We shall denote
$ck% the degree distribution of the check nodes and by$v l%
the degree distribution of the variable nodes. This means
there areNv l bits of the code word belonging tol parity
checks andNck parity checks involvingk bits for eachk and
l. We shall always assumeck50 for k,3 andv l50 for l
,2

It is useful to define the generating polynomials

c~x![(
k53

`

ckx
k, v~x![(

l 52

`

v lx
l , ~2.2!

which satisfy the normalization conditionc(1)5v(1)51.
Moreover, we define the average variable and check deg
l̄ 5v8(1) andk̄5c8(1). Particular examples of this formal
ism are the regular codes whose generating polynomials
c(x)5xk, v(x)5xl .

s

FIG. 2. The Tanner graph for a simple code withN57, M
53. The code words satisfy the three parity check equationsx1

1x41x51x750, x21x41x61x750, x31x51x61x750
(mod2).
0-2
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B. Decoding

The code words are transmitted through a noisy chan
We assume antipodal signalling: one sendss inP$11,21%
signals instead ofxinP$0,1% through the channel@the corre-
spondence being given bys5(21)x]. At the end of the
channel, a corrupted version of this signals is received. T
means that ifs inP$11,21% is transmitted, the valuexout is
received with probability densityQ(xoutus in). The informa-
tion conveyed by the received signalxout is conveniently
described by the log likelihood:3

h~xout!5
1

2
ln

Q~xoutu11!

Q~xoutu21!
. ~2.3!

We can represent this information by wavy lines in the Ta
ner graph.

The decoding problem is to compute the probability
each transmitted bits i

in to take the values i , given the struc-
ture of the code and the received messagexOout

5@x1
out, . . . ,xN

out#T. This is, in general, an intractable proble
@3,4#. Recently there has been a great interest in dealing w
this problem using approximate message-passing algorith

Message-passing algorithms are iterative: at each stt

one keeps track ofMk̄ messages from the variable nodes
the check nodes$ya→ i

(t) % and vice versa$xi→a
(t) %. Messages

can be thought to travel along the edges and computation
be executed at the nodes. A node computes the message
sent along each one of the edges, using the message
ceived from the other edges at the previous iteration@the
variable nodes also make use of the log likelihoodsh(xi

out)],
cf. Fig. 3. At some point the iteration is stopped~there exists
no general stopping criterion!, and a choice for the bits i is
taken using all the incoming messages@plus the log-
likelihood h(xi

out)].
The functions that define the ‘‘new’’ messages in terms

the ‘‘old’’ ones can be chosen to optimize the decoder p
formances. A particularly interesting family is the following

xi→a
(t11)5hi1 (

a8{ i :a8Þa

ya8→ i
(t) , ~2.4!

3Notice the unconventional normalization: the factor 1/2 is
serted to make it consistent with the statistical mechanics form
tion.

FIG. 3. A graphic representation of the operations executed
message-passing algorithm. At the variable nodei ~on the left!:
xi→1

(t11)5F(y2→ i
(t) ,y3→ i

(t) ;hi). At the check nodea ~on the right!:
ya→1

(t11)5G(x2→a
(t) ,x3→a

(t) ,x4→a
(t) ).
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ya→ i
(t11)5

1

z
arctanhF )

j Pa: j Þ i
tanhzxj→a

(t) G , ~2.5!

where we used the notationi Pa whenever the biti belongs
to the parity checka. The messages$xi→a

(•) % and$ya→ i
(•) % can

be rescaled in such a way to eliminate the parameterz ev-
erywhere except in front ofhi . Thereforez allows to tune
the importance given to the information contained in the
ceived message.

After the convergence of the above iteration one co
putes thea posteriori log likelihoods as follows:

Hi5hi1(
a{ i

ya→ i
(`) . ~2.6!

The meaning of$Hi% is analogous to that of$hi% ~but for the
fact that theHi incorporate the information coming from th
structure of the code!: the best guess for the biti is s i5
11 or s i521, depending whetherHi.0 or Hi,0.

The most popular choice for the free parameterz is z
51: this algorithm has been invented separately by Galla
@15# in the coding theory context~and named thesum-
productalgorithm! and by Pearl@40# in the artificial intelli-
gence context~and named thebelief propagationalgorithm!.
Also z5` is sometimes used~the max-productalgorithm!.

The alert reader will notice that Eqs.~2.4! and ~2.5! are
nothing but the cavity equations at inverse temperaturez for
a properly constructed spin model. This remark is the ob
of Refs.@22,41#.

In the analysis of the above algorithm it is convenient
assume thats i

in511 for i 51, . . . ,N. This assumption can
be made without loss of generality if the channel is symm
ric @i.e., if Q(xu11)5Q(2xu21)]. With this assumption,
the hi are i.i.d. random variables with density

p~h![Q~x~h!u11!ux8~h!u, ~2.7!

where x(h) is the function which inverts Eq.~2.3!. In the
following we shall consider two particular examples of noi
channels, the generalization being straightforward.

~1! The binary erasure channel~BEC!. In this case a bit
can either be received correctly or erased.4 There are there-
fore three possible outputs:$11,21,0%. The transition prob-
ability is

Q~xoutu11!5H ~12p! if xout511,

p if xout50,

0 if xout521,

Q~xoutu21!5H 0 if xout511,

p if xout50,

~12p! if xout521.

~2.8!

-
a- 4This is what happens, for instance, to packets in the Inte
traffic.

a

0-3
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We get therefore the following distribution for the log like
lihoods: p(h)5(12p)d`(h)1pd(h) ~whered` is a Dirac
delta function centered at1`). Let us recall that the capac
ity of the BEC is given byCBEC512p: this means that a
rate-R code cannot assure error correction ifp.12R. ~2!
The binary symmetric channel~BSC!. The channel flips each
bit independently with probabilityp. Namely,

Q~xoutu11!5H ~12p! if xout511,

p if xout521,

Q~xoutu21!5H p if xout511,

~12p! if xout521.
~2.9!

The corresponding log-likelihood distribution isp(h)5(1
2p)d(h2h0)1pd(h1h0), with h05arctanh(122p). The
capacity of the BSC is5 CBSC512h(p): a rate-R code can-
not correct errors ifp.dGV(R).

It is quite easy@34,42# to write a recursive equations fo
the probability distributions of the messagesp t(x) and
p̂ t(y):

p t11~x!5
1

l̄
(
l 52

`

v l l E )
i 51

l 21

dyip̂ t~yi !

3E dhp~h!dS x2h2(
i 51

l 21

yi D , ~2.10!

p̂ t11~y!5
1

k̄
(
k53

`

ckkE )
i 51

k21

dxip t~xi !

3dS y2
1

z
arctanhF )

i 51

k21

tanhzxi G D . ~2.11!

These equations~usually called thedensity evolutionequa-
tions! are correct for timest! ln N due to the fact that the
Tanner graph is locally treelike. They allow us therefore
predict whether, for a given ensemble of codes and no
level @recall that the noise level is hidden inp(h)] the algo-
rithm is able to recover the transmitted code word~for large
N). If this is the case, the distributionsp t(x) andp̂ t(y) will
concentrate onx5y51` ast→`. In the opposite case th
above iteration will converge to some distribution suppor
on finite values ofx andy. In Table I we report the threshol
noise levels for several regular codes, obtained using
density evolution method, together with the thresholds
the optimal decoding strategy, see Ref.@32#.

Finally let us notice that the fixed point of the iteratio
Eqs.~2.10! and~2.11!, is the replica symmetric order param
eter for the equivalent spin model.

5We denote by h(p) the binary entropy functionh(p)5
2p log2p2(12p)log2(12p). It is useful to define its inverse: we
denote bydGV(R) ~the so-called Gilbert-Varshamov distance! the
smallest solution ofh(d)512R.
04612
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III. STATISTICAL MECHANICS FORMULATION
AND THE REPLICA APPROACH

We want to define a statistical mechanics model wh
describes the decoding problem. The probability distribut
for the input code wordsI 5(s1 , . . . ,sN) conditional to the
received message takes the form

P~sI !5
1

Z
dH@sI #expH (

i 51

N

his iJ , ~3.1!

wheredH@sI #51 if sI satisfies the parity checks encoded
the matrixH, cf. Eq. ~2.1!, anddH@s#50 otherwise. Since
we assume the input code word to besI in5(11,11, . . . ,
11), thehi are i.i.d. with distributionp(h).

We modify the probability distribution~3.1! in two ways.
~1! We multiply the fieldshi by a weightẑ. This allows us

to tune the importance of the received message, analogo
to Eqs.~2.4! and ~2.5!. This modification was already con
sidered in Ref.@32#. Particularly important cases areẑ51
and ẑ50.

~2! We relax the constraints implied by the characteris
function dH@sI #. More precisely, let us denote each par
check by the unordered set of bit positions (i 1 , . . . ,i k)
which appear in it. For instance the three parity checks
Fig. ~2! are (1,4,5,7), (2,4,6,7), (3,5,6,7). Moreover, letVk
be the set of all parity checks involvingk bits ~in the irregu-
lar ensemble, the size ofVk is Nck). We can write explicitly
the characteristic functiondH@sI # as follows:

dH@s#5)
k53

`

)
( i 1••• i k)PVk

d~s i 1
•••s i k

,11!, ~3.2!

whered(•,•) is the Kronecker delta function. Now it is ver
simple to relax the constraints by making the substitut
d(s i 1

•••s i k
,11)→exp$b@si1

•••sik
21#%.

Summarizing the above considerations, we shall cons
the statistical mechanics model defined by the Hamiltoni

H~s!52 (
k53

`

(
( i 1 . . . i k)PVk

~s i 1
•••s i k

21!2
ẑ

b (
i 51

N

his i

~3.3!

at inverse temperatureb.
We address this problem by the replica approach@43#. The

replicated partition function reads

TABLE I. The statical and dynamical points for several regu
codes and decoding algorithms, cf. Eqs.~2.4! and ~2.5!.

BEC BSC

(k,l ) pc pd pc pd(z51) pd(z52) pd(z5`)

~6,3! 0.4882 0.4294 0.100 0.084 0.078 0.072
~10,5! 0.4995 0.3416 0.109 0.070 0.056 0.046
~14,7! 0.5000 0.2798 0.109 0.056 0.039 0.029
~6,5! 0.8333 0.5510 0.264 0.139 0.102 0.078
0-4
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^Zn&;E )
sW

dl~sW !dl̂~sW !e2NS[l,l̂] , ~3.4!

with the action

S@l,l̂ #5 l̄ (
sW

l~sW !l̂~sW !

2
l̄

k̄
(
k53

`

ck (
sW 1•••sW k

Jb~sW 1 , . . . ,sW k!l~sW 1!•••l~sW k!

2(
l 52

`

v l lnF(
sW

l̂~sW ! lH~sW !G2 l̄ 1
l̄

k̄
, ~3.5!

where

Jb~sW 1 , . . . ,sW k![expFb(
a

~s1 . . . sk21!G ,
H~sW !5K expS ẑh(

a
saD L

h

, ~3.6!

^•&h being the average overp(h). The order parameter
l(sW ) and l̂(sW ) are closely related, at least in the repli
symmetric approximation, to the distribution of messages
the decoding algorithm@32#, cf. Eqs.~2.10! and ~2.11!.

In the case of the BEC an irrelevant infinite constant m
be subtracted from the action~3.5! in order to get finite re-
sults. This corresponds to taking

HBEC~sW ![p1~12p!dsW ,sW 0
, ~3.7!

wheresW 05(11, . . . ,11).

IV. BINARY ERASURE CHANNEL: ANALYTICAL
AND NUMERICAL RESULTS

The binary erasure channel is simpler than the gen
case. Intuitively this happens because one cannot rec
misleading indications concerning a bit. Nonetheless it is
important case both from the practical@44# and from the
theoretical point of view@34,38,45#.

A. The decoding algorithm

Belief propagation becomes particularly simple in th
context, and can be interpreted as an iterative decimatio
the Tanner graph@38#. Since the knowledge about a receiv
bit is completely sure, the log likelihoods$hi%, cf. Eq. ~2.3!,
take the valueshi51` ~when the bit has been received6! or
hi50 ~when it has been erased!.

The analysis of this algorithm@34# uses the density evo
lution equations~2.10! and ~2.11! and is greatly simplified

6Recall that we are assuming the channel input to bes i
in511 for

i 51, . . . ,N.
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because the messages$xi→a
(t) % and$ya→ i

(t) % take only two val-
ues. Their distributions have the form

p t~x!5r td~x!1~12r t!d`~x!,

p̂ t~x!5 r̂ td~y!1~12 r̂ t!d`~y!, ~4.1!

whered`(•) is a delta function centered at1`. The param-
etersr and r̂ give the fraction of zero messages, respe
tively, from variables to checks and from checks to variabl
Using Eqs.~2.10! and ~2.11!, we get

r t115p
v8~ r̂ t!

v8~1!
, r̂ t11512

c8~12r t!

c8~1!
. ~4.2!

The initial conditionr05 r̂051 converges to the perfect re
covery fixed pointr5 r̂50 if p,pd . This corresponds to
perfect decoding. Forp.pd the algorithm gets stuck on
nontrivial linear system:r t→r* , r̂ t→ r̂* , with 0,r* ,
r̂* ,1. The two regimes are illustrated in Fig. 4.

B. Statical transition

In the spin model corresponding to the situation describ
above, we have two types of spins: those correspondin
correctly received bits, which are fixed by an infinite ma
netic fieldhi51`; and those corresponding to erased b
on which no magnetic field acts:hi50. We can therefore
consider an effective model for the erased bits once the
ceived ones are fixed to11. This corresponds somehow t
what is done by the decoding algorithm: the received bits
set to their values in the very first step of the algorithm a
remain unchanged thereafter.

Let us consider the zero-temperature limit. If the system
in equilibrium, its probability distribution will concentrate o
zero-energy configurations: the code words. We will ha
typically Nwords(p);2Nswords(p) code words compatible with
the received message. Their entropyswords(p) can be com-
puted within the replica formalism, cf. Appendix A. The re
sult is

swords~r,r̂;p!5 l̄ r~12 r̂ !1
l̄

k̄
c~12r!1pv~ r̂ !2

l̄

k̄
,

~4.3!

which has to be maximized with respect to the order para
etersr and r̂. The saddle point equations have exactly t
same form as the fixed point equations corresponding to
dynamics~4.2!, namely,r5pv8( r̂)/v8(1) and r̂512c8(1
2r)/c8(1)

The saddle point equations have two stable solutions,
local maxima of the entropy~4.3!: ~i! a completely ordered
solution r5 r̂50, with entropy swords(0,0)50 ~in some
cases this solution becomes locally unstable above s
noiseploc); ~ii ! ~for sufficiently high noise level! a paramag-
netic solutionr* ,r̂* .0. The paramagnetic solution appea
at the same valuepd of the noise above which the decodin
algorithm gets stuck.
0-5
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FIG. 4. The evolution of the iterative decoding algorithm on the BEC, cf. Eqs.~4.2!. Here we consider the (6,5) code:r t115p@1
2(12r t)

5#4. On the leftp50.5,pd , on the rightp50.6.pd .
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The fixed point to which the dynamics~4.2! converges
coincides with the statistical mechanics result forr* ,r̂* .
However the entropy of the paramagnetic soluti
swords(r* ,r̂* ) is negative atpd and becomes positive onl
above a certain critical noisepc . This means that the linea
system produced by the algorithm continues to have a un
solution belowpc , although our linear-time algorithm is un
able find such a solution.

The ‘‘dynamical’’ critical noisepd is the solution of the
following equation:

p
v9~ r̂* !c9~12r* !

v8~1!c8~1!
521, ~4.4!

wherer* andr̂* solve the saddle point equations. The sta
cal noise can be obtained by settingswords(r* ,r̂* )50. Fi-
nally the completely ordered solution becomes locally u
stable for

ploc5
c8~1!v8~1!

v9~0!c9~1!
. ~4.5!

As an example, let us consider the one-parameter famil
R51/2 codes specified by the following generating polyn
mials: c(x)5ax41(12a)x6, v(x)5ax21(12a)x3. This
is an irregular code which smoothly interpolates between
regular (6,3) and (4,2) codes. The local stability threshold
given by

ploc~a!5
~32a!2

6a~523a!
. ~4.6!

The dynamical and critical curvespd(a) and pc(a) are re-
ported in Fig. 5. Notice that thea value wherepd(a)
reaches its maximum, corresponding to the best code in
family, is neither 0 nor 1. This is a simple example showi
that irregular codes (0,a,1) are generally superior to
regular ones (a50 or a51 in this example!. Notice also
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that above the tricritical point a t'0.793 014 12, pt

'0.390 577 24, the three curvesploc(a), pc(a), andpd(a)
coincide. In the following we shall study in some detail th
a50 case, which corresponds to a regular (6,3) code,
corresponding critical and dynamical pointspc and pd are
given in Table I.

C. Dynamical transition

The dynamical transition is not properly described with
the replica symmetric treatment given above. Indeed,
paramagnetic solution cannot be considered, betweenpd and
pc , as a metastable state because it has negative ent
One cannot therefore give a sensible interpretation of

FIG. 5. The phase diagram of the family of codes with gene
ing polynomials c(x)5ax41(12a)x6, v(x)5ax21(12a)x3.
The dashed line gives the local stability threshold for the co
pletely ordered ferromagnetic phase. The continuous and
dashed lines refer~respectively! to the static and dynamic critica
pointspc(a) andpd(a).
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DYNAMIC PHASE TRANSITION FOR DECODING ALGORITHMS PHYSICAL REVIEW E66, 046120 ~2002!
coincidence between the critical noise for the decoding a
rithm and the appearance of the paramagnetic solution.

Before embarking into the one-step replica symmet
breaking~1RSB! calculation, let us review some well-know
facts @46,47#. Let us call mf(b,m) the free energy ofm
weakly coupled ‘‘real’’ replicas timesb. This quantity can be
computed in the 1RSB calculation. In the limitb→`, with
mb5m fixed, we havemf(b,m)→mf(m). The number of
metastable states with a given energy densitye is

NMS~e!;eNS(e), ~4.7!

where the complexityS(e) is the Legendre transform of th
m replicas free energy:

S~e!5me2mf~m!ue5][mf(m)] . ~4.8!

The ~zero-temperature! dynamic energyed and the static en-
ergy es are,7 respectively, the maximum and the minimu
energy such thatS(e)>0.

The static energy is obtained by solving the followin
equations:

es5f~m!,

]f~m!50, ~4.9!

which corresponds to the usual prescription of maximiz
the free energy over the replica-symmetry-breaking par
eterm @43#. The dynamic energy is given by

ed5]@mf~m!#,

]2@mf~m!#50. ~4.10!

Finally, if es50 the complexity of the ground state isS(0)
52 limm→`mf(m).

We were not able to exactly compute the 1RSB free
ergy f(m). However excellent results can be obtain
within an ‘‘almost factorized’’ variational ansatz, cf. Appen
dix . The picture that emerges is the following.

~1! In the low noise region (p,pd), no metastable state
exist. Local search algorithms should therefore be able
recover the erased bits.

~2! In the intermediate noise region (pd,p,pc) an ex-
ponentially large number of metastable states appear. T
have energy densitiese in the rangees,e,ed , with es
.0. Therefore the transmitted code word is still the only o
compatible with the received message. Nonetheless a l
number of extremely stablepseudo-code-wordsstop local
algorithms. The number of violated parity checks in the
code words cannot be reduced by means of local moves

7Notice that one can give~at least! three possible definitions of th
dynamic energy:~i! from the solution of the nonequilibrium dynam
ics: ed

(d) , ~ii ! imposing the replicon eigenvalue to vanish:ed
(r ) , ~iii !

using, as in the text, the complexityS(e), ed
(c) . The three results

coincide in thep-spin spherical fully connected model, howev
their equality in the present case is, at most, a conjecture.
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~3! Above pc we havees50: a fraction of the metastabl
states is made of code words. Moreover,S(0) ~which gives
the number of such code words! coincides with the paramag
netic entropyswords(r* ,r̂* ) computed in the preceeding se
tion.

As an illustration, let us consider the (6,3) regular cod
In Fig. 6 we plot the resulting complexity curvesS(e) for
three different values of the erasure probabilityp. In Fig. 7,
left frame, we report the static and dynamic energieses and
ed as functions ofp. In the right frame we present the tota
complexity S tot[maxeS(e)5S(ed), and the zero-energy
complexityS(0).

D. Numerical results

In order to check analytical predictions and to better illu
trate the role of metastable states, we have run a set of M
Carlo simulations, with Metropolis dynamics, on the Ham
tonian ~3.3! of the ~6,3! regular code for the BEC. Notice
that local search algorithms for the decoding problem h
been already considered by the coding theory commu
@48#.

We studied quite large codes (N5104 bits!, and tried to
decode it~i.e., to find a ground state of the correspondi
spin model! with the help of simulated annealing techniqu
@49#. For each value ofp, we start the simulation fixing a
fraction (12p) of spins tos i511 ~this part will be kept
fixed all along the run!. The remainingpN spins are the
dynamical variables we change during the annealing in or
to try to satisfy all the parity checks. The energy of the s
tem counts the number of unsatisfied parity checks.

The cooling schedule has been chosen in the follow
way: t Monte Carlo sweeps8 ~MCS! at each of the 1000

8Each Monte Carlo sweep consists inN proposed spin flips. Each
proposed spin flip is accepted or not accordingly to a standard
tropolis test.

FIG. 6. The complexityS(e) for ~from top to bottom! p
50.45 ~below pc), p50.5, andp50.55 ~abovepc).
0-7
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FIG. 7. Left-hand frame: the static and dynamic energieses and ed of the metastable states~respectively, solid and dashed lines!.
Right-hand frame: the total complexity maxeS(e) and the zero-energy complexityS(0).
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equidistant temperatures betweenT51 andT50. The high-
est temperature is such that the system very rapidly eq
brates on the paramagnetic energyeP(T). Typical values for
t are from 1 to 103.

Notice that, for any fixed cooling schedule, the compu
tional complexity of the simulated annealing method is line
in N. Then we expect it to be affected by metastable state
energyed , which are present forp.pd : the energy relax-
ation should be strongly reduced arounded and eventually be
completely blocked.

In order to illustrate how the system relaxes during
simulated annealing, we show in Fig. 8 the energy densit
a function of the temperature forp50.4 ~left! and p50.6
~right! and various cooling rates,t510,102,103 ~each datase
is the average over many different samples!.

For p50.4,pd the final energy strongly depends on t
cooling rate and the slowest cooling procedure is always a
to bring the system to the ground state, corresponding to
04612
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transmitted code word. Decoding by simulated annealing
therefore successful.

For p50.6.pd the situation drastically changes. Below
temperatureTd ~marked by an arrow in Fig. 8, right frame!
there is an almost complete stop of the energy relaxationTd
marks the dynamical transition, and the corresponding
ergy ed(Td)5eP(Td) is called the threshold energy. The e
ergy of threshold states still varies a little bit with temper
ture, ed(T), and the final value reached by the simulat
annealing algorithm is its zero-temperature limited(0)
5ed . Remember that, by construction, ground states of z
energy are present for anyp value, but they become unreach
able forp.pd , because they become shielded by metasta
states of higher energy.

We show in Fig. 9 the lowest energy reached by the sim
lated annealing procedure for differentp andt values. While
for p,pd all parity checks can be satisfied and the ene
relaxes to zero in the limit of a very slow cooling, fo
FIG. 8. Energy relaxation for the Hamiltonian of the~6,3! regular code during the simulated annealing witht MCS per temperature and
1000 equidistant temperatures in@0,1#
0-8
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DYNAMIC PHASE TRANSITION FOR DECODING ALGORITHMS PHYSICAL REVIEW E66, 046120 ~2002!
p>pd the simulation gets stuck in a metastable state of fin
energy, that is, with a number of unsatisfied parity checks
orderN. The agreement with the analytic prediction~dotted
line! is quite good everywhere, but very close topd .

Discrepancies between analytical predictions and num
cal results may be very well due to finite-size effects in
latter. One possible explanation for large finite-size effe
near the dynamic critical pointpd is the following. Meta-
stable states of energyed are stable under any local dynami
which may flip only a finite number of spins simultaneous
and under global dynamics flipping no more thanvN spins
simultaneously. Physical intuition~threshold states becom
more robust increasingp) imply that the functionv(p) must
monotonically increase forpP@pd,1#. Moreover, continuity
reasons tell us thatv(pd)50. The fact thatv(p) is very
small close topd , together with the fact that in numerica
simulations we are restricted to finite values ofN, allows the
local Monte Carlo dynamic to relax below the analytical p
dicted threshold energy. A more detailed characterization
this effect is presently under study and will be presented
forthcoming publication.

V. THE GENERAL CHANNEL: ANALYTICAL
AND NUMERICAL RESULTS

We considered the case of a general noisy channel u
two different approaches: a finite-temperature and a z
temperature approach. While the first one offers a clear c
nection with the dynamics of the decoding-by-annealing
gorithm, the second one gives a nice geometrical picture
the situation.

A. Finite temperature

Suppose you received some message encoded usi
Gallager code and you want to decode it, but no one
plained to you the belief propagation algorithm, cf. Eqs.~2.4!
and ~2.5!.

A physicist’s idea would be the following. Write the co
responding HamiltonianH(sI ), see Eq.~3.3!, and run a

FIG. 9. Lowest energies reached by the simulated annea
Errors are sample-to-sample fluctuations.
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Monte Carlo algorithm at inverse temperatureb. If you wait
enough, you will be able to sample the configurationsI ac-
cording to the Boltzmann distributionPb(sI )}e2bH(s).
Then cool down the system adiabatically: i.e., change
temperature according to some schedule$b1 ,b2 , . . . ,% with
bk↑`, waiting enough at each temperature for the system
equilibrate.

As b→` the Boltzmann measure of the Hamiltonia
~3.2! concentrates on the code words@for which the ex-
change term in Eq.~3.2! is equal to zero#. Moreover, each
code word is given a weight that depends on its likelihoo
In formulas,

lim
b→`

Pb~sI !5
1

Zẑ

P~sI uxOout!ẑ, ~5.1!

whereP(sI uxOout) is the probability forsI to be the transmitted
code word, conditional to the received messagexOout, andZẑ

is a normalization constant. Therefore whenb@1, our algo-
rithm will sample a code word with probability proportiona
to P(sI uxOout) ẑ. For good codes below the critical nois
threshold pc , the likelihood P(sI uxOout) is strongly
concentrated9 on the correct input code word. Therefore th
system will spend most of its time on the correct code wo
as soon asb@1 and ẑ>1 ~for ẑ,1, pc has a nontrivial
dependence onẑ, cf. Ref. @32#!.

This algorithm will succeed as long as we are able to ke
the system in equilibrium at all temperatures down to zero
some form of ergodicity breaking is present this may take
exponentially~in the sizeN) long time. Let us suppose tha
O(N) computational time is spent at each temperatureb i of
the annealing schedule~this is what happens in nature!. We
expect to be able to equilibrate the system only at l
enough noise@let us say forp,pd( ẑ)], when the magnetic
field in Eq. ~3.3! is strong enough to single out a uniqu
ergodic component.

1. Theoretical dynamical line

The existence of metastable states can be detected w
the replica formalism by the so-called marginal stability co
dition. One considers the saddle point equations for
1RSB order parameter, fixing the RSB parameterm51, cf.
Appendix B. The dynamical temperatureTd(p) is the highest
temperature for which a ‘‘nontrivial’’ solution of the equatio
exists. At this temperature, the ergodicity of the physical d
namics breaks down~at least this is what happens in infinit
connectivity mean-field models! and we are no longer able t
equilibrate the system within anO(1) physical time@i.e., an
O(N) computational time#.

We looked for a solution of Eqs.~B3!–~B6! using the
population dynamics algorithm of Ref.@19#. We checked the
‘‘nontriviality’’ of the solution found by considering the vari

9Namely, we haveP(sI inuxOout)512O(e2aN). This happens be-
cause there is a minimumO(N) Hamming distance between dis
tinct code words@15#.

g.
0-9
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FRANZ et al. PHYSICAL REVIEW E 66, 046120 ~2002!
ance of the distributionsr(x), r̂(y).
We consider the (6,5) regular code because it has w

separated statical and dynamical thresholdspc and pd , cf.
Table I. The resulting dynamical line for the Hamiltonia
~3.2! with ẑ51 is reported in Fig. 10. The dynamic temper
ture Td(p) drops discontinuously below a noisepd( ẑ): for
p,pd( ẑ) the dynamical transition disappears and the sys
can be equilibrated in linear computational time down
zero temperature. We getpd(1)'0.14, which is in good
agreement with the coding theory results, cf. Table I.

2. Numerical experiments

We have repeated for the BSC the same kind of simu
tions already presented at the end of Sec. IV D for the BE

We have run a set of simulated annealings for the Ham
tonian ~3.3! of the ~6,5! regular code. System size isN
512 000 and the cooling rates are the same as for the B
the only difference being the starting and the ending te

FIG. 10. The dynamical phase transition for a regular (6,5) c

@cf. Eq. ~3.2! with k56 andl 55] with ẑ51.
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peratures, which are nowT51.2 andT50.2 ~plus a quench
from T50.2 toT50 at the end of each cooling!. This should
not have any relevant effect because 0.2!Td'0.6.

The important difference with respect to the BEC case
that now we have no fixed spins: allN spins are dynamica
variables subject to a random external field of intensityh
5(1/b)arctanh(122p), cf. Eq. ~3.3!.

Also here, as in the case of the BEC, the energy relaxa
for p.pd undergoes a drastic arrest when the temperatur
reduced below the dynamical transition atTd , see Fig. 11.

Unfortunately, in this case, we are not able to calcul
analytically the threshold energyed(0), butonly the dynami-
cal critical temperatureTd and then the threshold energy
the transitioned(Td), which is higher thaned(0). Thedif-
ferenceDe5ed(Td)2ed(0) is usually not very large~see,
e.g., the BEC case!, but it becomes apparent whenp is de-
creased towardspd . Indeed forp50.25 ~Fig. 11 left!, the
Metropolis dynamics is still able to relax the system for te
peratures belowTd and then it reaches an energy well belo
ed(Td). On the other hand, forp50.5 ~Fig. 11 right!, where
De is small, the relaxation belowTd is almost absent and th
analytic prediction is much more accurate. Notice that
this case we have run a still longer annealing witht5104:
the asymptotic energy is very close to that fort5103 and
hardly distinguishable from the analytical prediction.

In Fig. 12 we report the lowest energy reached by
simulated annealing for many values ofp and t
510,102,103, together with the analytic calculation for th
threshold energy atTd .

B. Zero temperature

This approach follows from a physical intuition that
slightly different from that explained above. Once again
will formulate it algorithmically. For sake of simplicity we
shall refer, in this section, to the BSC. We refer to Append
for more general formulas.

The overlap between the transmitted code word and
received message

e

he

FIG. 11. Energy relaxation for the Hamiltonian of the~6,5! regular code during the simulated annealing witht MCS per temperature and

1000 equidistant temperatures in@0.2,1.2#. Notice that in both cases,p.pd . The dot-dashed line is the theoretical prediction for t
paramagnetic exchange energy.
0-10
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qin,out5
1

N (
i 51

N

s i
ins i

out, ~5.2!

is typically qin, out5122p. Given the received message, o
can work in the subspace of all the possible configurati
which have the prescribed overlap with it,10 i.e., all thesI
such that (1/N)( i 51

N s is i
out'(122p). Once this constrain

has been imposed~for instance, in a Kawasaki-like Mont
Carlo algorithm!, one can restrict oneself to the exchan
part of the Hamiltonian~3.2!

Hexch~sI !52(k(~ i 1 . . . i k!s i 1
•••s i k

and apply the cooling strategy already described in the
ceding section.

Below the static transitionpc there exists a unique cod
word having overlap (122p) with the received signal. This
is exactly the transmitted onesI in. This means thatsI in is the
unique ground state ofHexch(sI ) in the subspace we are con
sidering. If we are able to keep our system in equilibriu
down to T50, the cooling procedure will finally yield the
correct answer to the decoding problem. Of course, if me
stable states are encountered in this process, the time
quired for keeping the system in equilibrium diverges exp
nentially in size.

We expect the number of such states to be exponent
large:11

NMS~e,qup!;eNSp(e,q), ~5.3!

wheree is the exchange energy densityHexch(sI )/N. Notice
that we emphasized the dependence of these quantities

10Of course this is true up toO(N21/2) corrections. For instance
one can work in the space of configurationssI such that (122p
2d)N,( i 51

N s is i
out,(122p1d)N, for some small numberd.

11For a related calculation in a fully connected model see R
@51#.

FIG. 12. Lowest energies reached by the simulated anneali
Errors are sample to sample fluctuations. The theoretical predic
ed(Td) is computed using the results in Fig. 10 forTd(p).
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the noise levelp. In fact the noise level determines the st
tistics of the received messagesI out. The static threshold is
the noise level at which an exponential number of co
words with the same overlap as the correct one (q51
22p) appears:Sp(0,122p).0. The dynamic transition oc
curs where metastable states with the same overlap beg
exist: Sp(e,122p).0 for somee.0.

1. The random linear code limit

It is quite easy to compute the complexitySp(e,q) in the
limit k,l→` with the rateR512 l /k fixed. In particular, the
zeroth-order term in a largek,l expansion can be derived b
elementary methods.

Since the derivation is quite standard@32,50# we shall
limit ourselves to quoting the result. Let us define the fun
tion

S̃~e,q!5h@~12q!/2#1~12R!h@e/2~12R!#2~12R!.

~5.4!

The number of metastable states isNMS(e,q);2NS(e,q) with
S(e,q)5S̃(e,q) when S̃(e,q), ]eS̃(e,q).0, andS(e,q)
52` otherwise.

In Fig. 13 we plot the region of the (e,q) plane for which
S(e,q).0, for R51/2 codes. Notice that in this limi
S(e,q) does not depend on the received messagesI out ~and,
therefore, is independent ofp). As expected, we getpc
5dGV(R) andpd50.

In order to get the first nontrivial estimate for the dynam
cal point pd , we must consider the next term in the abo
expansion. This correction can be obtained within the rep
formalism. The corresponding estimates forpc and pd are
reported below for a few values ofk and l:

f.

s.
n FIG. 13. Metastable states in the random linear code limit
R51/2: their number is exponential between the continuous and
dashed lines. It vanishes discontinuously when the dashed lin
crossed and continuously when the continuous line is crossed.
critical and dynamical overlaps are related to the statical and crit
noise by qc,d5122pc,d . In this limit pd50 and pc5dGV(1/2)
'0.110 025.
0-11
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(k,l ) pc pd(1)

(6,3) 0.097 0.071
(10,5) 0.108 0.060
(14,7) 0.109 0.049
(6,5) 0.264 0.108

2. The complete calculation

The full 1RSB solution can be obtained through the po
lation dynamics method@19#. Here, as in Sec. V A 1, we
focus on the example of the (6,5) code. In Fig. 14 we p
the configurational entropy as a function of the energy of
states along the lines of constantq, together with the corre-
sponding results obtained within a simple variational a
proach. The approximate treatment is in quantitative ag
ment with the complete calculation fore,ed , but predicts a
value for the threshold energy, which is larger than the c
rect one:ed

var.ed . Hereed
var'0.127 and almostp indepen-

dent.
Unhappily the estimate of the dynamic energy obtain

from this curve is not very precise. Moreover, at least t
more considerations prevent us from comparing these re
with those of simulated annealing simulations, cf. S
V A 2: ~i! In our annealing experiments the overlap with t
received messagesI out is free to fluctuate,~ii ! We cannot
exclude the fact that the 1RSB solution become unstabl
low temperature.

However, the population dynamics solution give the e
mate pd&0.155. This allows us to confirm that the poi
pd50.139 where the decoding algorithm fails to decode,
Table I, coincides with the point where the metastable sta
appear.

VI. CONCLUSIONS AND FUTURE PERSPECTIVES

In this work we have studied the dynamical phase tran
tion for a large class of diluted spin models in a random fie
the main motivation being their correspondence with v
powerful error correcting codes.

FIG. 14. The configurational entropy versus the energy for
(6,5) regular code. Symbols refer to various noise levels. From
to bottomp50.5,0.4,0.35,0.3,0.25,0.2,0.18,0.155. Continuous li
give the result of a variational computation@20#.
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In the particular case of a binary erasure channel, we w
able to show that the dynamic critical point coincides exac
with the critical noise level for an important class of deco
ing algorithms, namely, belief propagation~cf. Sec. IV and
Appendix A!. Above this threshold, metastable states of h
energy exist in an exponentially large number and they
hibit the decoding algorithm from converging in linear tim
The presence of such metastable states has been verifie
extensive Monte Carlo simulations: The energy at wh
very slow simulated annealings get stuck is compatible w
the analytic prediction.

For a general model of the noisy channel, we could
present a completely explicit proof of the coincidence b
tween the decoding threshold and the dynamical transit
However, also for the binary symmetric channel, we ha
obtained, within numerical precision, identical values for t
algorithmic and the statistical mechanics thresholds.

It may be worth listing a few interesting problems whic
emerge from our work:

~1! We show explicitly that the identity between statistic
mechanics and algorithmic thresholds holds in general. F
a technical point of view, this is a surprising fact because
two thresholds are obtained, respectively, within replica sy
metric, cf Eqs.~2.10! and ~2.11!, and a one-step replica
symmetry-breaking-calculations.

~2! We considered message-passing and simulated an
ing algorithms. Extend the above analysis to other classe
algorithm ~and, eventually, to any linear-time algorithm!.

~3! Message-passing decoding algorithms get stuck
cause they are unable to decode some fraction of the rece
message, the ‘‘hard’’ bits, while they have been able to
code the other ones, the ‘‘easy’’ bits, cf. Appendix I A 1.
closer look at this heterogeneous behavior would be v
fruitful ~see Ref.@54# for a first attempt!.
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APPENDIX A: CALCULATIONS, BINARY ERASURE
CHANNEL

In this appendix we give the details of the replica calc
lation for the BEC. Notice that although we use the regu
(6,3) code as a generic example, all the computations
presented for general degree distributions$ck% and $v l%.
Since the replica symmetric case can be regarded as a
ticular limit of the RSB one, we shall limit ourselves to d
tailing the last one.

Replica symmetry breaking

The exact computation of the 1RSB free energy is a d
ficult task for a finite connectivity model@18#. Good results
can be obtained from following variational ansatz~see Ref.
@52# for the general philosophy of the variational approac!

l~sW !5~12p!dsW ,sW 0
1p f~sI (1)!••• f ~sI (n/m)!, ~A1!

e
p
s
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l̂~sW !5 f̂ ~sI (1)!••• f̂ ~sI (n/m)!, ~A2!

wheresI (a)5(s (a21)m11, . . . ,sam). This amounts to con-
sidering a fraction of the spins~namely, those with an infinite
magnetic field! as frozen in the11 state, and assuming a
the other spins to be equivalent. In then→0 limit we get
]nS@l,l̂ #→f@ f , f̂ # with

f@ f , f̂ #5
l̄ p

m
lnS (

sI
f ~sI ! f̂ ~sI ! D 2

p

m (
l 52

`

v l lnS (
sI

f̂ ~sI ! l D
2

l̄

k̄m
(
n50

`

gnlnF (
sI 1 . . . sk

Jb
(m)~sI 1 , . . . ,sI k!

3 f ~sI 1!••• f ~sI k!G , ~A3!

wheresI arem-component replicated spins and

gn[(
k5n

`

ckS k

n
D pn~12p!k2n. ~A4!

The generating function of the coefficients$gn% is given by
g(x)5c(12p1px). Notice that$gn% is the effective degree
distribution of parity check nodes~i.e., the analogous o
$ck%), once the received bits have been eliminated.

Notice that the energy~A3! is invariant under a multipli-
cative rescaling off (s) and f̂ (s). We shall fix this freedom

by requiring that(sI f (s)5(sI f̂ (s)51.
Substituting

f ~sI ![E dxr~x!

expS bx(
a51

m

saD
~2coshbx!m

,

3 f̂ ~sI ![E dyr̂~y!

expS by(
a51

m

saD
~2coshby!m

, ~A5!

we obtain

bf@r,r̂ #5
l̄ p

m
lnF E dr~x!dr̂~y!~11tanhbxtanhby!mG

2
l̄

k̄
lnS 11e22b

2 D2
l̄

k̄m
(
n50

`

gnlnF E )
i 51

n

dr~xi !

3~11tanhbtanhbx1•••tanhbxn!mG
2

p

m (
l 52

`

v l lnH E )
i 51

l

dr̂~yi !F)
i 51

l

~11tanhbyi !

1)
i 51

l

~12tanhbyi !G J ~A6!

and the corresponding saddle point equations:
04612
r~x!

~2coshbx!m
5

1

Z l̄
(
l 52

`

v l lBl
21E )

i 51

l 21
dr̂~yi !

~2coshbyi !
m

3dS x2(
i 51

l 21

yi D , ~A7!

r̂~y!5
1

Q (
n51

`

f n21An
21E )

i 51

n21

dr~yi !dS y2
1

b
arctanh

3@ tanhbtanhby1•••tanhbyn21# D , ~A8!

where f n21[gnn/(pk̄), and

Bl[E )
i 51

l

dr̂~yi !F)
i 51

l

~11tanhbyi !

1)
i 51

l

~12tanhbyi !Gm

, ~A9!

An[E )
i 51

n

dr~xi !@11tanhbtanhbx1•••tanhbxn#m.

~A10!

The constantsZ andQ can be chosen to enforce the norma
ization condition*dr(x)5*dr̂(y)51.

In the b→` limit, we keepmb5m fixed and adopt the
dollowing ansatz forr(x) and r̂(y):

r~x!5 (
q52`

1`

rqd~x2q!,

r̂~y!5 r̂1d~y21!1 r̂0d~y!1 r̂2d~y11!. ~A11!

Moreover, we definer1[(q.0rq andr25(q,0rq .
We finally obtain the following expression for the fre

energy:

f~m!5
l̄ p

m
ln$11~e22m21!@r1r̂21r2r̂1#%

2
l̄

k̄m
(
n50

`

gnlnH 11
1

2
~e22m21!@~r11r2!n

2~r12r2!n#J 2
p

m (
l 52

`

v l

3 lnH (
n1 ,n0 ,n2

8 l !

n1!n0!n2!
r̂

1

n1r̂0
n0r̂

2

n2

3e22mmin(n1 ,n2)J , ~A12!

the sum(8 being restricted to the integersn1 ,n0 ,n2>0
such thatn11n01n25 l . The saddle point equations are
0-13
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r̂15
1

2Q (
n51

`

f n21An
21@~r11r2!n211~r12r2!n21#,

~A13!

r̂25
1

2Q (
n51

`

f n21An
21@~r11r2!n212~r12r2!n21#,

~A14!

r15
1

Z l̄
(
l 52

`

v l lBl
21 (

n1.n2 ;n0

~ l 21!!

n1!n0!n2!

3 r̂
1

n1r̂0
n0r̂

2

n2e22mn2dn11n01n2 ,l 21 , ~A15!

r25
1

Z l̄
(
l 52

`

v l lBl
21 (

n2.n1 ;n0

3
~ l 21!!

n1!n0!n2!
r̂

1

n1r̂0
n0r̂

2

n2e22mn1dn11n01n2 ,l 21 ,

~A16!

where

An511
1

2
~e22m21!@~r11r2!n2~r12r2!n#,

~A17!

Bl5 (
n1 ,n0 ,n2

l !

n1!n0!n2!

3 r̂
1

n1r̂0
n0r̂

2

n2 e22mmin(n1 ,n2)dn11n01n2 ,l ,

~A18!

Q5 (
n51

`

f n21An
21 , ~A19!

Z5
1

l̄
(
l 52

`

v l lBl
21 (

n1 ,n0 ,n2

~ l 21!!

n1!n0!n2!

3 r̂
1

n1r̂0
n0r̂

2

n2e22mmin(n1 ,n2)dn11n01n2 ,l 21 .

~A20!

We look for a ‘‘glassy’’~i.e., with r1 ,r2.0) solution of
Eqs. ~A13!–~A16!. Such a solution exists in some interv
m1(p),m,m2(p). For p,p* no physical solution exists
for any value ofm. For p* ,p,pd , 05m1(p),m2(p) and
f(m) is a monotonically increasing function betweenm1(p)
andm2(p). A physical solution exists but we cannot asso
ate with it any well-behaved complexity. Abovepd we have
0,m1(p),m2(p)5` and a ‘‘well-behaved’’ complexity
04612
-

can be computed by Legendre transformingmf(m),12 cf.
Eq. ~4.8!. The complexityS(e) is nonzero betweenes and
ed . At p5pc the static energyes vanishes: more than on
code word~more precisely, about exp@NS(0)# code words! is
consistent with the received message.13

Beyond the factorized ansatz

The general one-step replica-symmetry-breaking or
parameter@18# is

l~sW !5E DQ@r# )G51

n/m F E dr~x!

expS bx(
aPG

saD
~2coshbx!m

G ,

l̂~sW !5E DQ̂@ r̂# )G51

n/m F E dr̂~y!

expS by(
aPG

saD
~2coshby!m

G .

~A21!

The saddle point equations for functional order parame
Q@r# and Q̂@ r̂# are given in the following section for a
general channel, cf. Eqs.~B3! and ~B4!.

In the preceding section we used a quasifactorized an
of the form

Q@r#5~12p!d@r2d`#1pd@r2r0#, Q̂@ r̂#5d@r̂2 r̂0#,
~A22!

whered@•# is a functional delta function, andd`(x) is the
ordinary Dirac delta centered atx51`. This ansatz does
not satisfy the saddle point equations~B3! and ~B4!, but
yields very good approximate results.

Some exact results~within an 1RSB scheme! can be ob-
tained by writing the general decomposition

Q@r#5u Qs@r#1~12u! Qa@r#,

Q̂@ r̂#5ûQ̂s@ r̂#1~12û!Q̂a@ r̂#, ~A23!

whereQs@r# andQ̂s@ r̂# are concentrated on the subspace
symmetric distributions@for which r(x)5r(2x), r̂(y)
5 r̂(2y)], while Qa@r# andQ̂a@ r̂# have zero weight on this
subspace. Using this decomposition in Eqs.~B3! and ~B4!,

12The situation aroundpd is more complicate than the one w
described. This is an artifact of the variational approximation
adopted for computing the 1RSB free energy. Here is a sketc
what happens. Atp'0.419 a maximum off(m), which is still
defined between 0 andm2(p),`, appears. Atp'0.424 the func-
tion f(m) breaks down into two branches: a smallm @defined be-
tween 0 andm1(p).0] and a largem @defined betweenm1(p) and
m2(p),`] continuation. This second branch has a maximum
somem* . At p'0.427 15,m2(p)→`. This threshold can be com
puted by studying the asymptotic problem defined by Eqs.~A13!–
~A16! in the limit m→`. Finally, atp5pd'0.429 440, the smallm
branch disappears.

13Once again, because of the variational approximation we m
in computingf(m), we obtaines50 abovep.pc8'0.486 97.
0-14
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we get, for the BEC, a couple of equations foru and û,
which are identical to the replica symmetric ones, cf. E
~4.3!.

The meaning of this result is clear. Forp.pd the system
decomposes into two parts. There exists acore which the
iterative algorithms are unable to decode, and which is co
pletely glassy. This part is described by the function
Qs@r# and Q̂s@ r̂#. The rest of the system~the peripheral
region! can be decoded by the belief propagation algorit
and, physically, is strongly magnetized. This correspond
the functionalsQa@r# and Q̂a@ r̂# ~a more detailed study
shows that the asymmetry ofr and r̂ is, in this case, typi-
cally positive!.

APPENDIX B: CALCULATIONS, THE GENERAL
CHANNEL

In this appendix we give some details of the replica c
culation for a general noisy channel@i.e., for a general dis-
tribution p(h) of the random fields#. In contrast with the
BEC case, cf Eqs.~A11!, the local field distributions do no
have a simple form even in the zero-temperature lim
Therefore our results are mainly based on a numerical s
tion of the saddle point equations.

1. Finite temperature

The one-step replica-symmetry-breaking ansatz is gi
in Eqs. ~A21!. Inserting in Eq.~3.5! and taking then→0
limit, we getS@l,l̂ #5nf@Q,Q̂#1O(n2), with

f@Q,Q̂#5
l̄

mE DQ@r#E DQ̂@ r̂# lnH E dr~x!E dr̂~y!

3@11tb~x!tb~y!#mJ
2

l̄

k̄m
(
k53

`

ckE )
i 51

k

DQ@r i #

3 lnH E )
i 51

k

dr i~xi !@11tbtb~x1!•••tb~xk!#
mJ

2
1

m (
l 52

`

v lE )
i 51

l

DQ̂@ r̂ i #

3K lnH E )
i 51

l

dr̂ i~yi !Fl 11S ẑh

b
,y1 , . . . ,yl D mJ L

3h2^ lncosh~ ẑh!&h1
l̄

k̄
ln~11tb!, ~B1!

where we used the shorthandtb(x)5tanh(bx), tb5tanh(b),
and defined

Fn~y1 , . . . ,yn![)
i 51

n

@11tb~yi !#1)
i 51

n

@12tb~yi !#.

~B2!
04612
.

-
s

to

-

t.
u-

n

The saddle point equations are

Q@r#5
1

l̄
(
l 52

`

v l l E dp~h!E )
i 51

l 21

DQ̂@ r̂ i #

3d†r2rh
( l )@ r̂1 , . . . ,r̂ l 21#‡, ~B3!

Q̂@ r̂#5
1

k̄
(
k53

`

ckkE )
i 51

k21

DQ@r i #d†r̂2 r̂ (k)@r1 , . . . ,rk21#‡,

~B4!

where d@•••# denotes the functional delta function, an
rh

( l )@•••#, r̂ (k)@•••# are defined as follows:

rh
( l )~x!

~2coshbx!m
5

1

ZE )
i 51

l 21
dr̂ i~yi !

~2coshbyi !
m

3dS x2
ẑh

b
2y12•••2yl 21D , ~B5!

r̂ (k)~y!5E )
i 51

k21

dr i~xi !dFy2
1

b
arctanh

3@ tbtb~x1!•••tb~xk21!#G . ~B6!

These equations can be solved numerically using the po
lation dynamics algorithm of Ref.@19#. Some outcomes o
this approach are reported in Sec. V A 1.

2. Zero temperature

In this appendix we compute the number of metasta
states having a fixed overlap with a random configuratio14

sI out. The dynamical and statical thresholds for the BSC c
be deduced from the results of this computation, cf. S
V B. The generalization to other statistical models for t
noisy channel is straightforward~but slightly cumbersome
from the point of view of notation!.

In order to study the existence of metastable states,
consider the constrained partition function

Z~q;sout!5(
sI

e2bHexch(s)dS Nq2(
i 51

N

s i
outs i D , ~B7!

where the received bitss i
out are i.i.d. quenched variables

s i
out511 (21) with probability 12p (p). We introducem

‘‘real’’ weakly coupled replicas of the system:

14Notice that such states are not necessarily stable with respe
moves that change their overlap withsI out.
0-15
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Zm~q;sI out!5E
2 i`

1 i`

)
a51

m

b
dha

2p
expS 2Nq(

a
haD

3 (
$sa%

expF2b (
a51

m

Hexch~sI a!

1b (
a51

m

(
i 51

N

has i
outs i

aG . ~B8!

For a general channel we should look at the likelihood rat
than at the overlap.

We make the hypothesis of symmetry among them
coupled replicas. In particular, we use the same value of
Lagrange multiplier for all of them:ha5h0 /bm. We are
therefore led to compute

f~m;h0!52 lim
n→0

1

n
ln Z̃m~h0 ;sI out!n/m, ~B9!

where

Z̃m~h0 ;sI out!5 (
$sa%

expF2b (
a51

m

Hexch~sI a!

1~h0 /m! (
a51

m

(
i 51

N

s i
outs i

aG . ~B10!

Next we take the zero-temperature limit keepingmb5m
fixed. With a slight change of notation, we hav
mf(m;h0)→mf(m;h0). The entropy of metastable state
cf. Eq. ~5.3!, is obtained as the Legendre transform
mf(m;h0):

Sp~e,q!5me2h0q2mf~m;h0!, ~B11!

with e5]m@mf(m;h0)# andq52]h0
@mf(m;h0)#.

The replica expression forf(m;h0) is easily obtained by
taking the zero temperature limit on the results of the p
ceding section. The free energy reads@for sake of simplicity
we write it for a regular (k,l ) code; the generalization i
trivial by making use of Eq.~B1!#

mf@Q,Q̂#5 l E DQ@r#E DQ̂@ r̂# lnH11E dr~x!

3E dr̂~y!u~2xy!@e22mmin(uxu,uyu)21#J
2

l

kE )
i 51

k

DQ@r i #
e
R

M

04612
r

e

f

-

lnH 11E )
i 51

k

dr i~xi !u~2x1•••xk!

3@e22mmin(1,ux1u, . . . ,uxku)21#J
2E )

i 51

l

DQ̂@ r̂ i #(
sout

psoutlnH E )
i 51

l

dr̂ i~yi !

3exp@22mEsout~y1•••yl !#J 2h0 , ~B12!

where psout512p for sout511, and psout5p for sout5
21 and

Es~y1 , . . . ,yl !5minF (
i :yis,0

uyi u;h0 /m1 (
i :yis.0

uyi uG .
~B13!

The saddle point equations become in this limit

Q@r#5
1

l̄
(
l 52

`

v l l(
sout

psoutE )
i 51

l 21

DQ̂@ r̂ i #

3d@r2rsout
( l )

@ r̂1 , . . . ,r̂ l 21##, ~B14!

Q̂@ r̂#5
1

k̄
(
k53

`

ckkE )
i 51

k21

DQ@r i #d@r̂2 r̂ (k)@r1 , . . . ,rk21##.

~B15!

The functionalsrsout
( l )

@•••#, r̂ (k)@•••# are defined as follows

rsout
( l )

~x!5
1

ZE )
i 51

l 21

dr̂ i~yi !expS muxu2m(
i

uyi u D
3d„x2~h0 /m!sout2y12•••2yl 21…,

~B16!

r̂ (k)~y!5E )
i 51

k21

dr i~xi !d@y2sgn~x1•••xk21!

3min~1,ux1u, . . . ,uxk21u!#. ~B17!
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