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The state-of-the-art error correcting codes are based on large random constriratidosn graphs, random
permutations, etg.and are decoded by linear-time iterative algorithms. Because of these features, they are
remarkable examples of diluted mean-field spin glasses, both from the static and dynamic points of view. We
analyze the behavior of decoding algorithms by mapping them onto statistical-physics models. This allows us
to understand the intrinsig.e., algorithm independenteatures of this behavior.
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[. INTRODUCTION years. These are diluted spin glasses, i.e., spin glasses on
random(hypengraphs[18-21.

Recently there has been some interest in studying com- The new codes are decoded by using approximate itera-
plexity phase transitions, i.e., abrupt changes in the compuive algorithms, which are closely related to the cavity ap-
tational complexity of hard combinatorial problems as someproach to mean-field spin glas§@®,23. We think therefore
control parameter is variedl]. These phenomena are that a close investigation of these systems from a statistical
thought to be somehow related to the physics of glassy syghysics point of view, having in mind complexity.e., dy-
tems, where the physical dynamics experiences a dramatitamica) issues, can be of great theoretical intefest.
slowing down as the temperature is lowefed Let us briefly recall the general setting of coding theory

Complexity is a central issue also in coding thef8y4].  [5] in order to fix a few notationgcf. Fig. 1 for a pictorial
Coding theory[5—7] deals with the problem of communicat- description. A source of information produces a stream of
ing information reliably through an unreliable channel of symbols. Let us assume, for instance, that the source pro-
communication. This task is accomplished by making use ofluces unbiased random bits. The stream is partitioned into
error correcting codesin 1948 Shannoii8] proved that al-  blocksof lengthNp.e. Each of the possible™ock blocks is
most any error correcting code allows to communicate withmapped to acode word(i.e., a sequence of bjtof length
out errors, as long as the rate of transmitted information isN> Ny, by theencoderand transmitted through the chan-
kept below thecapacityof the channel. However decoding is nel. An error correcting code is therefore defined either as a
an intractable problem for almost any code. Coding theory isnapping {0,1}Noec— {0,1}N, or as a list of 2bock code
therefore a rich source of interesting computational probwords. Therate of the code is defined e&R= Npiock/ N.
lems. Let us denoté the transmitted code word by™"

On the other hand i't is known that error correcting codes:[xiln' ... X"T. Due to the noise, a different sequence of
can be mapped onto disordered spin mof@isl3. Remark-  gympols X=X, X3 is received. The decoding
ably there has recently_ been_ a revolution in coding theo%roblem is to inferx, givenx°t the definition of the code,
which has lead to the invention of new and very powerfulyq the properties of the noisy channel.

code; base_d on random constructions: turbo Cbﬂﬁs low It is useful to summarize the general picture which
density parity check codedDPCC) [15,16], repetition ac-

cumulated code§l7], etc. As a matter of fact, equivalent

spin models have been intensively studied in the last few The reader is urged to consult Ref@4—33 for a statistical

mechanics analysis of the optimal decoding., of static issugs
2We shall denote transmitted and received symbols by typographic

*Email address: franz@ictp trieste.it characters, with the exception of symbolgin1,—1}. In this case
"Email address: micleone@ictp.trieste.it we use the physicists notation and denote such symbols-.by
*Email address: Andrea.Montanari@Ipt.ens.fr When considering binary symbols we will often pass from the
SUMR 8549, UniteMixte de Recherche du Centre National de la notation to theo notation, the correspondenee=(—1)* being

Recherche Scientifique et de I' Ecole Normale Siqee. understood. Finally vectors of lengbhwill be always denoted by
'Email address: Federico.Ricci@romal.infn.it underlined characters: e..0r ¢.
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FIG. 1. A schematic description of how error correcting codes X 3
work. 6
X

emerges from our work. We shall focus on Gallager codes 7

(both regular andirregular). The optimal decoding strategy FIG. 2. The Tanner graph for a simple code with=7, M
(maximum-likelihood decodings able to recover the trans- =3. The code words satisfy the three parity check equatigns
mitted message below some noise threshpkd:p.. Itera-  +x,+x5+x;=0, Xo+ X4+ X+ X7=0, X3+ X5+ Xg+X;=0
tive, linear-time algorithms get studin general at a lower  (mod2).

noise level, and are successful only fprp{®%), with

pff"g')$ p.. In general, the “dynamical” thresholdga'g') de-  The matrix |l is called theparity check matrixand theM
pends upon the details of the algorithm. However, it seems tequations summarized in E@®.1) are theparity check equa-
be always smaller than some univerdalthough code- tions(or, for shortparity checks If the matrixH has rankv
dependentvaluepy. Moreover, some “optimal” linear-time  (this is usually the cagethe rate isR=1—M/N.

algorithms are successful up g [i.e., p{#9’=py]. The uni- There exists a nice graphic representation of Exjl)
versal thresholdy coincides with the dynamical transition which is often used in the coding theory community: the
[2] of the corresponding spin model. Tanner graphrepresentatiofi35,36. One constructs a bipar-

The plan of the paper is the following. In Sec. Il we tite graph by associating a left-hand node with each one of
introduce LDPCC, focusing on Gallageessemblgsand we  the N variables, and a right-hand node with each one of the
describemessage-passindecoding algorithms. We briefly M parity checks. An edge is drawn between treriable
recall the connection between these algorithms and the cawodei and the parity check node if and only if the variable
ity equations for mean-field spin glasses. In Sec. lll we dex; appears with a nonzero coefficient in the parity check
fine a spin model which describes the decoding problem, andquationa. We refer to Fig. 2 for a simple example.
introduce the replica formalism. In Sec. IV we analyze this In general, one considers ensembles of codes by defining
model for a particular choice of the noisy chanftiebinary ~ a random construction of the parity check matrix. One of the
erasure channgl In this case calculations can be fully ex- simplest ensembles is given by regul&rlj Gallager codes.
plicit and the results are particularly clear. Then, in Sec. VIn this case one chooses the matkixrandomly among all
we address the general case. Finally we draw our conclusionie NX M matrices havindg nonzero entries per row, and
in Sec. VI. The Appendixes collect some details of our comer column.

putations. Amazingly good codef37-39 were obtained by slightly
more sophisticated irregular constructions. In this case one
Il. ERROR CORRECTING CODES, DECODING assigns the distributions of the degrees of parity check nodes
ALGORITHMS, AND CAVITY EQUATIONS and variable nodes in the Tanner graph. We shall denote by

) L ) . {c,} the degree distribution of the check nodes and iy
This section introduces the reader to some basic terminol,g jegree distribution of the variable nodes. This means that
ogy in coding theory. In the first part we define So@®  yhere areNy, bits of the code word belonging th parity

semblef codes, namelyegular andirregular LDPCC. In checks andNc, parity checks involving bits for eactk and
the second one we describe a class of iterative decoding 3 we shall always assumg=0 for k<3 anduv,=0 for |

gorithms. These algorithms have a very clear physical inter—<2
pretation, which we briefly recall. Finally we explain how
these algorithms are analyzed in the coding theory commu-
nity. This section does not contain any original result. The
interested reader may consult Refg,15,23,34 for further * *

details. c00=2 e, v(0)=2 vix, (22

It is useful to define the generating polynomials

A. Encoding
hich satisfy the normalization conditioo(1)=v(1)=1.

Low density parity check codes are defined by assigning oreover, we define the average variable and check degrees

binary NXM matrix H={H;;}, with H;j;{0,1}. All the

code words are required to satisfy the constraint I_=v’(1) and?=c’(1). Particular examples of this formal-
ism are the regular codes whose generating polynomials are
Hx=0(mod?2). (21  c(x)=x* v(x)=x.
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1 1
1 yg‘:il)=zarctan+ [T tankgx(®,|, (2.5
. jeaj#i
h,./'\/|>l 2 2 o
where we used the notatiore « whenever the bit belongs
3 3 to the parity checkr. The messagels( } and{y{’) .} can
4

a—i
be rescaled in such a way to eliminate the paramétev-

) ) ) . erywhere except in front ofi;. Therefore{ allows to tune
FIG. 3. A graphic representation of the operations executed in #he importance given to the information contained in the re-

message-passing algorithm. At the variable noden the lef): ceived message
(t+1)_ ® O . ; . . . .
X1 =FV3iysiihi). At the check nodew (on the right After the convergence of the above iteration one com-

D g(x® O 0 -
Ya1= GG 0 X35 0 X4 0)- putes thea posteriorilog likelihoods as follows:

B. Decoding

The code words are transmitted through a noisy channel. Hi=h, +C§i yo. (2.6
We assume antipodal signalling: one semd< {+1,—1}

signals instead ot"e{0,1} through the channdthe corre- The meaning ofH} is analogous to that dh;} (but for the

1 i — X
spondence being given tyy—( 1.) ]'.At the_ end (.)f the fact that theH; incorporate the information coming from the
channel, a corrupted version of this signals is received. Th'gtructure of the code the best guess for the hitis o=
=

means that ilv" e {+1,— 1} is transmitted, the valug®!is :
. . . outl _im . ~ +1oro;=-1, depending whethetl;>0 or H;<O0.
received with probability densit®(x°“{o™"). The informa The most popular choice for the free paramefeis ¢

) . . Ut .
gon g(k))n\éegeilhbyl thelz_kreI%elv%q signat™ is conveniently _ 1: this algorithm has been invented separately by Gallager
escribed by the log likelihood: [15] in the coding theory contextand named thesum-
1 QUM +1) productalgorithm and by Pear[40] in the artificial intelli-
h(x°) = = In—— —. (2.3 gence contextand named theelief propagatioralgorithm).
27 Q(x-1) Also /=0 is sometimes usetthe max-productalgorithm.
The alert reader will notice that Eq&.4) and (2.5 are
We can represent this information by wavy lines in the Tan-nothing but the cavity equations at inverse temperaguia
ner graph. a properly constructed spin model. This remark is the object
The decoding problem is to compute the probability forof Refs.[22,41].
each transmitted bit|" to take the valuer;, given the struc- In the analysis of the above algorithm it is convenient to
ture of the code and the received messag@" assume that!"=+1 fori=1,... N. This assumption can
=[x, ... xQYT. This is, in general, an intractable problem be made without loss of generality if the channel is symmet-
[3,4]. Recently there has been a great interest in dealing withic [i.e., if Q(x|+1)=Q(—x|—1)]. With this assumption,
this problem using approximate message-passing algorithmthe h; are i.i.d. random variables with density
Message-passing algorithms are iterative: at each tstep
one keeps track dflk messages from the variable nodes to p(h)=Q(x(h)|+1)[x"(h)[, 2.7
the check nodegy" .} and vice versgx" }. Messages
can be thought to travel along the edges and computations where x(h) is the function which inverts Eq2.3. In the
be executed at the nodes. A node computes the message tofp#owing we shall consider two particular examples of noisy
sent along each one of the edges, using the messages f&annels, the generalization being straightforward.
ceived from the other edges at the previous iterafite (1) The binary erasure chann@EC). In this case a bit
variable nodes also make use of the log IikeIihob(izq"“t)], can either be received correctly or eraééthere are there-
cf. Fig. 3. At some point the iteration is stoppétiere exists ~fore three possible outputs:+1,—1,0}. The transition prob-
no general stopping criterionand a choice for the bit; is ~ ability is
taken using all the incoming messaggslus the log- .
likelihood h(x*"]. (1-p) if XM=+1,
The functions that define the “new” messages in terms of QXM +1)= p if x°U=0,
the “old” ones can be chosen to optimize the decoder per- 0 if xU=_1
formances. A patrticularly interesting family is the following: '

- © 0 if xX=+1,
+1)_
Ea=h 2 e (24 QXM ~1)= p ifx*=0, (28

(1—p) if x%U=—1.
3Notice the unconventional normalization: the factor 1/2 is in-
serted to make it consistent with the statistical mechanics formula- “This is what happens, for instance, to packets in the Internet

tion. traffic.
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We get therefore the following distribution for the log like- TABLE |. The statical and dynamical points for several regular
lihoods: p(h)=(1—p) 8..(h)+ pd(h) (where s, is a Dirac  codes and decoding algorithms, cf. E¢®4) and(2.5).

delta function centered at ). Let us recall that the capac-
ity of the BEC is given byCgec=1—p: this means that a BEC BSC

rateR code cannot assure error correctiorpit1—R. (2) K| -1 —2 o
The binary symmetric chann@SC). The channel flips each () Pe Pd Pe Palf=1) Pold=2) Pali=e)

bit independently with probabilitp. Namely, (6,39 0.4882 0.4294 0.100 0.084 0.078 0.072
(105 0.4995 0.3416 0.109 0070  0.056  0.046
(1-p) if x=+1, (147 05000 02798 0.109 0056 0039  0.029
Q(x™+1) :| D if xOUe — 1, (6,5 0.8333 05510 0.264 0.139 0102  0.078
i pif xM=+1, lll. STATISTICAL MECHANICS FORMULATION
Qx| —1)= out (2.9 '
(1-p) if xM=—1. AND THE REPLICA APPROACH

; T g We want to define a statistical mechanics model which
The corresponding log-likelihood distribution ®h)=(1 . . DT
—p)8(h—hg) +pd(h+hy), with hy=arctanh(L 2p). The describes the decoding problem. The probability distribution

capacity of the BSC &Cgsc=1—h(p): a rateR code can- for tr_\e input code wordr= (o4, . . .,0p) conditional to the
not correct errors ip> day(R). received message takes the form

It is quite easy[34,47 to write a recursive equations for 1 N
tpe probability distributions of the messages(x) and p(g)zzgn[g]exp{ Zl hiﬂi], (3.0
m(y): =
1 -1 where 6y o]=1 if ¢ satisfies the parity checks encoded by
_= S he matrixH, cf. Eq.(2.1), and 6;{ o]=0 otherwise. Since
Tep1(X)== vlf dy; m(y;) t ; nol=0
ot I Izz ! .Hl Yty we assume the input code word to b&=(+1,+1, ...,
+1), theh; are i.i.d. with distributionp(h).
We modify the probability distributio(3.1) in two ways.

(1) We multiply the fieldsh; by a weightZ. This allows us
to tune the importance of the received message, analogously

-1
xfdhp(h)(s(x—h—El yi), (2.10

A 17> k=1 to Egs.(2.4) and (2.5). This modification was already con-
7Tt+l(y):ik§=:3 Ckkf Il:[l dx; (X)) sidered in Ref[32]. Particularly important cases ate=1
and=0.
1 k=1 (2) We relax the constraints implied by the characteristic
X8| y— 7 arctan+ i];[l tanhyx; ) (2.1)  function 8;[ o]. More precisely, let us denote each parity

check by the unordered set of bit positionis,(. . . ,iy)

These equation@usually called thedensity evolutiorequa which appear in it. For instance the three parity checks in
" Fig. (2 1,4,57), (2,4,6,7 7). M
tions) are correct for times<In N due to the fact that the 9. (2) are (1,4,5,7), (2,4,6,7), (3,5,6,7). Moreover, I

- . be the set of all parity checks involvirigbits (in the irregu-
Tan(;!er grr?pfrl] IS I;)cally t_reellke. Thegl allo]:/v uz therel;ore ©ar ensemble, the size 61, is Nc,). We can write explicitly
predict whether, for a given ensemble of codes and nois h . f 08 follows:
level [recall that the noise level is hidden p{h)] the algo- the characteristic functio nLe] as follows:
rithm is able to recover the transmitted code w(at large o
N). If this is the case, the distributions,(x) and m(y) will sfol=1l I oo 0,41, (32
concentrate om=y= +% ast—o. In the opposite case the = k=3t

above iteration will converge to some distribution supporte%herea. Y is the Kronecker delta function. Now it is very

on.flmte values ok andy. In Table | we report the threshold simple to relax the constraints by making the substitution
noise levels for several regular codes, obtained using thg 41 X _ ey
(Ull' O )—e p{ﬁ[o'll' O Iz

density evolution method, together with the thresholds for

the optimal decoding strategy, see R&2). Summarizing the above considerations, we shall consider
Finally let us notice that th,e fixed point of the iteration the statistical mechanics model defined by the Hamiltonian
Egs.(2.10 and(2.1)), is the replica symmetric order param- " 3 N
eter for the equivalent spin model.
a P Ho)=-2 = 2 (7, 0,~1) =% 2, hio;
K=3 (i1.. 70 ey B =1

(3.3
SWe denote byh(p) the binary entropy functionh(p)= .
—p log,p—(1—p)log,(1—p). It is useful to define its inverse: we at inverse temperaturg.
denote bydgy(R) (the so-called Gilbert-Varshamov distand¢he We address this problem by the replica apprd@d. The

smallest solution oh(8)=1—-R. replicated partition function reads
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because the messades”, ! and{y" .} take only two val-

a—|

<Zn>~J IT dx(o)dh(o)e NS, (34 yes. Their distributions have the form

with the action m(X) = p6(X) + (11— pp) 8..(X),

m(X) = p8(y) + (1= pp) 8.(y), 4.

whered,.(-) is a delta function centered ate. The param-
etersp and p give the fraction of zero messages, respec-
> > > - tively, from variables to checks and from checks to variables.
—= c J , A DN T
=2 o 2 plon TN (o) (o) Using Egs.(2.10 and(2.11), we get

SAA]=T2 o)A ()

| o'(p) - c'(1-py)
— T+ - =p—, =1-—F. 4.2
2 vyIn E o') H(o-) I+k (3.5 Pt+1 pv’(l) Pt+1 (1)
where The initial conditionpo=;30=1 converges to the perfect re-

covery fixed pointp=p=0 if p<py. This corresponds to
perfect decoding. Fop>p, the algorithm gets stuck on a
nontrivial linear systemip,—p, , pi—p,, With 0<p, ,
p,.<1. The two regimes are illustrated in Fig. 4.

Jﬁ((;l’ S ,&k)EeXF{ﬁg (0'1 . .O'k_l):|,

Ho)= < ex;{ §h§ Ua) > h ' 39 B. Statical transition
In the spin model corresponding to the situation described
(-)n being the average ovep(h). The order parameters ahove, we have two types of spins: those corresponding to
)\(0’) and )\(a') are closely related, at least in the replica correctly received bits, which are fixed by an infinite mag-
symmetric approximation, to the distribution of messages imetic field h;= +«; and those corresponding to erased bits,
the decoding algorithri32], cf. Egs.(2.10 and(2.1D. on which no magnetic field act$r;=0. We can therefore

In the case of the BEC an irrelevant infinite constant mustonsider an effective model for the erased bits once the re-
be subtracted from the actigB.5) in order to get finite re- ceived ones are fixed te 1. This corresponds somehow to

sults. This corresponds to taking what is done by the decoding algorithm: the received bits are
R set to their values in the very first step of the algorithm and
Hpec(o)=p+(1-p)d,, b (3.7 remain unchanged thereafter.
Let us consider the zero-temperature limit. If the system is
wheregy=(+1, ... +1). in equilibrium, its probability distribution will concentrate on

zero-energy configurations: the code words. We will have
typically Nyorad p) ~ 2\VSworedP) code words compatible with
the received message. Their entragy,q{p) can be com-
puted within the replica formalism, cf. Appendix A. The re-
The binary erasure channel is simpler than the generault is
case. Intuitively this happens because one cannot receive _
misleading indications concerning a bit. Nonetheless it is an A= ~ ~
important case both from the practida4] and from the sWOde(p’p'p):Ip(l_p)+ic(l_p)+pv(p)_?
theoretical point of view34,38,45. 4.3

IV. BINARY ERASURE CHANNEL: ANALYTICAL
AND NUMERICAL RESULTS

which has to be maximized with respect to the order param-

Belief propagation becomes particularly simple in thlseterSp andp. The saddle point equations have exactly the

context, and can be interpreted as an iterative decimation %ame form as the fixed point equations corresponding to the
the Tanner grapfB8]. Since the knowledge about a received dynam|cs(4 2), namely,p=pv’(p)/v’(1) andp=1-c'(1

bit is completely sure, the log likelihood#;}, cf. Eq.(2.3), —p)lc’(1) . ) , ,
take the value, = + % (when the bit has been receieor The saddle point equations hav_e two stable solutions, i.e.,
hi=0 (when it has been erased local maxima of the entropy.3): (i) a completely ordered

The analysis of this algorithrfB4] uses the density evo- solution p=p=0, with entropy S,,q{0,0)=0 (in some
lution equations(2.10 and (2.11) and is greatly simplified cases this solution becomes locally unstable above some
noisep,c); (ii) (for sufficiently high noise levela paramag-
netic solutionp,, , ,3* >0. The paramagnetic solution appears
®Recall that we are assuming the channel input te'e- +1 for ~ at the same valupy of the noise above which the decoding
i=1,...N. algorithm gets stuck.

A. The decoding algorithm
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FIG. 4. The evolution of the iterative decoding algorithm on the BEC, cf. E§®). Here we consider the (6,5) code;, ,=p[1
—(1—-py)°]* On the leftp=0.5<py, on the rightp=0.6>py.

The fixed point to which the dynamidgl.2) converges that above the tricritical pointa;~0.793014 12, p,

coincides with the statistical mechanics result fqr,p, .  ~0.390577 24, the three curveg (), pc(a), andpy(a)
However the entropy of the paramagnetic solutioncoincide. In the following we shall study in some detail the
Sworad P+ ) IS Negative apy and becomes positive only a=0 case,_whlch.corresponds to a regL_JIar (6,3) code, the
above a certain critical noise, . This means that the linear C0rrésponding critical and dynamical poing and pg are
system produced by the algorithm continues to have a uniqu@Ven in Table I.

solution belowp,., although our linear-time algorithm is un-

able find such a solution.

The “dynamical” critical noisepy is the solution of the C. Dynamical transition

following equation: The dynamical transition is not properly described within
R the replica symmetric treatment given above. Indeed, the
v"(p,)C"(1—p,) paramagnetic solution cannot be considered, betygemd
v’ (1)c’ (1) =-1 (4.4) p., as a metastable state because it has negative entropy.

One cannot therefore give a sensible interpretation of the

wherep,, and[)* solve the saddle point equations. The stati-

cal noise can be obtained by settisg, 4 p, ,p,)=0. Fi-
nally the completely ordered solution becomes locally un-
stable for

c(1)u'(1)

oc= . 4.
Ploc™ noye(1) 49

~~

As an example, let us consider the one-parameter family 01\2
R=1/2 codes specified by the following generating polyno-
mials: c(x) = ax*+ (1— a)x®, v(X)=ax?+(1—a)x>. This

is an irregular code which smoothly interpolates between the
regular (6,3) and (4,2) codes. The local stability threshold is
given by

(3—a)? 0.3
Pioc(a@)= 6a(5-3a)" (4.6) 0 : !

The dynamical and critical curvgs,(«) andp(«) are re- FIG. 5. The phase diagram of the family of codes with generat-
ported in Fig. 5. Notice that ther value wherepy(«@) ing polynomials c(x)=ax*+ (1— a)x?, v(x)=ax®+(1—a)x®.
reaches its maximum, corresponding to the best code in thighe dashed line gives the local stability threshold for the com-
family, is neither O nor 1. This is a simple example showingpletely ordered ferromagnetic phase. The continuous and dot-
that irregular codes (@a<1) are generally superior to dashed lines refefrespectively to the static and dynamic critical
regular ones =0 or a=1 in this examplg Notice also pointsp.(«) andpy(a).
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coincidence between the critical noise for the decoding algo-%%
rithm and the appearance of the paramagnetic solution.  oos |
Before embarking into the one-step replica symmetry-,q, [
breaking(1RSB) calculation, let us review some well-known ooz |
facts [46,47. Let us callm¢(B,m) the free energy o ' /I
weakly coupled “real” replicas timeg. This quantity can be ’ ’ ’ ’
computed in the 1RSB calculation. In the linfit—o, with 0.0

mpB=u fixed, we havang(B,m)— ud(n). The number of  oos
metastable states with a given energy density 0.02 /\

Nus(€)~eN>9), (4.7

where the complexity (¢€) is the Legendre transform of the 44,
m replicas free energy:

S(e)=pe—pp(u) | e=dlud(m)] (4.9 0005 0,005 oot o0t 002 0.025 0.03

The (zero-temperatupedynamic energyy and the static en- €
ergy e are/ respectively, the maximum and the minimum  FIG. 6. The complexityX(e) for (from top to bottorh p
energy such thak (e)=0. =0.45 (below p,), p=0.5, andp=0.55 (abovep,).

The static energy is obtained by solving the following

equations: (3) Above p, we havee,=0: a fraction of the metastable

€= () states is made of code words. Moreovg(0) (which gives
° o the number of such code wondsoincides with the paramag-
dp(u)=0, (4.9 Qs:}ic entropysyorad P+ P« ) COMputed in the preceeding sec-

which corresponds to the usual prescription of maximizing AS an illustration, let us consider the (6,3) regular code.
the free energy over the replica-symmetry-breaking paraml? Fig. 6 we plot the resulting complexity curvéy(e) for

eterm [43]. The dynamic energy is given by three different values of the erasure probabifityin Fig. 7,
left frame, we report the static and dynamic energigand
eg=d[mo(u)], €q4 as functions of. In the right frame we present the total
complexity ,=max>(e)=2(ey), and the zero-energy
o wep(w)]=0. (4.10  complexity%(0).

Finally, if e,=0 the complexity of the ground state 3{0)
=—lim,_.pud(u). . o _
We were not able to exactly compute the 1RSB free en- In order to check analytical predictions and to better illus-
ergy ¢(u). However excellent results can be obtainedtrate the role of metastable states, we have run a set of Monte
within an “almost factorized” variational ansatz, cf. Appen- Carlo simulations, with Metropolis dynamics, on the Hamil-
dix . The picture that emerges is the following. tonian (3.3 of the (6,3) regular code for the BEC. Notice

(1) In the low noise regiong<pg), No metastable states that local search algorithms for the decoding problem have
exist. Local search algorithms should therefore be able tdeen already considered by the coding theory community
recover the erased bits. [48].

(2) In the intermediate noise regiop{<p<p.) an ex- We studied quite large codedl € 10* bits), and tried to
ponentially large number of metastable states appear. Thedecode it(i.e., to find a ground state of the corresponding
have energy densities in the rangee,<e<ey, with e Spin model with the help of simulated annealing techniques
>0. Therefore the transmitted code word is still the only ond49]. For each value op, we start the simulation fixing a
compatible with the received message. Nonetheless a lardgaction (1—p) of spins too;=+1 (this part will be kept
number of extremely stablpseudo-code-wordstop local ~ fixed all along the rup The remainingpN spins are the
algorithms. The number of violated parity checks in thesedynamical variables we change during the annealing in order

code words cannot be reduced by means of local moves. to try to satisfy all the parity checks. The energy of the sys-
tem counts the number of unsatisfied parity checks.

The cooling schedule has been chosen in the following

"Notice that one can giv@at least three possible definitions of the Way: 7 Monte Carlo sweefis(MCS) at each of the 1000
dynamic energyti) from the solution of the nonequilibrium dynam-
ics: €, (ii) imposing the replicon eigenvalue to vanisff? , (iii)
using, as in the text, the complexi®/(e), eg°>. The three results 8Each Monte Carlo sweep consistsNproposed spin flips. Each
coincide in thep-spin spherical fully connected model, however proposed spin flip is accepted or not accordingly to a standard Me-
their equality in the present case is, at most, a conjecture. tropolis test.

D. Numerical results
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FIG. 7. Left-hand frame: the static and dynamic energiggnd ¢4 of the metastable statdsespectively, solid and dashed lines
Right-hand frame: the total complexity maXe) and the zero-energy complexi®/(0).

equidistant temperatures betwebr 1 andT=0. The high- transmitted code word. Decoding by simulated annealing is
est temperature is such that the system very rapidly equilitherefore successful.

brates on the paramagnetic eneegyT). Typical values for For p=0.6>p4 the situation drastically changes. Below a
r are from 1 to 16. temperaturelT 4 (marked by an arrow in Fig. 8, right frarme

Notice that, for any fixed cooling schedule, the computa-there is an almost complete stop of the energy relaxalign.
tional complexity of the simulated annealing method is lineamarks the dynamical transition, and the corresponding en-
in N. Then we expect it to be affected by metastable states adrgy e4(Ty) = €p(Ty) is called the threshold energy. The en-
energyey, Wwhich are present fop>py: the energy relax- ergy of threshold states still varies a little bit with tempera-
ation should be strongly reduced aroundand eventually be ture, e4(T), and the final value reached by the simulated
completely blocked. annealing algorithm is its zero-temperature limdg(0)

In order to illustrate how the system relaxes during the=¢;. Remember that, by construction, ground states of zero
simulated annealing, we show in Fig. 8 the energy density asnergy are present for apwalue, but they become unreach-
a function of the temperature fgr=0.4 (left) and p=0.6  able forp>p,, because they become shielded by metastable
(right) and various cooling rates=10,1¢, 10° (each dataset states of higher energy.
is the average over many different samples We show in Fig. 9 the lowest energy reached by the simu-

For p=0.4<py the final energy strongly depends on the lated annealing procedure for differgmand r values. While
cooling rate and the slowest cooling procedure is always ablfor p<py all parity checks can be satisfied and the energy
to bring the system to the ground state, corresponding to theelaxes to zero in the limit of a very slow cooling, for

0.12 T T T T 0.12
01t BEC p=04 / 0.1
0.08 E 0.08
w  0.06 [ 1 « 006 I
0.04 E 0.04
0.02 | S 1 0.02 - analytic threshold
------------------- g4(0)
0 " " L i " 0 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1

FIG. 8. Energy relaxation for the Hamiltonian of tf&3) regular code during the simulated annealing witMCS per temperature and
1000 equidistant temperatures[id, 1]
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0.04 - - - - - - Monte Carlo algorithm at inverse temperatygelf you wait
BEC enoqgh, you will be able to sample the configuratiorac-
=10, —— cording to the Boltzmann distributiorP z(g)xe A2,
0.03 + I, T=10, " ot Then cool down the system adiabatically: i.e., change the
E = 18: {0) I temperature according to some schede,B,, . . . ,} with
xax, . Bi1ee, waiting enough at each temperature for the system to
> 002} s . 1 equilibrate.
S = As B—« the Boltzmann measure of the Hamiltonian
o el ® o (3.2 concentrates on the code worffer which the ex-
0.0l L At \{\ N = change term in Eq(3.2) is equal to zerh Moreover, each
= e code word is given a weight that depends on its likelihood.
T M In formulas,
0 — 1 1 1 1 1 1 .
0.3 04 0.5 0.6 0.7 0.8 0.9 1 lim PB( og)=— P(Q_|)_(out)§’ (5.1)
p B—e Zz

FIG. 9. Lowest energies reached by the simulated annealing. ) N )
Errors are sample-to-sample fluctuations. whereP(g]x°") is the probability forg to be the transmitted

code word, conditional to the received messatjé andZ;

p=py the simulation gets stuck in a metastable state of finitd> 2 nor_mallzanon constant. Ther_efore Wrﬁ.’*"fl’ our algo-
energy, that is, with a number of unsatisfied parity checks of'thm will sample a code word with probability p-r.oport|or.1al
orderN. The agreement with the analytic predictitaotted 0 P(a|x*")¢. For good codes below the critical noise
line) is quite good everywhere, but very closepg. threshold p., the likelihood P(g[x™) is strongly
Discrepancies between analytical predictions and numericoncentrqte?:lon the correct_ mput code word. Therefore the
cal results may be very well due to finite-size effects in theSystem will spend most of its time on the correct code word
latter. One possible explanation for large finite-size effectsas soon ag3>1 and (=1 (for (<1, p. has a nontrivial
near the dynamic critical poinpg is the following. Meta-  dependence o, cf. Ref.[32]).
stable states of energy, are stable under any local dynamic,  This algorithm will succeed as long as we are able to keep
which may flip only a finite number of spins simultaneously, the system in equilibrium at all temperatures down to zero. If
and under global dynamics flipping no more thaN spins  some form of ergodicity breaking is present this may take an
simultaneously. Physical intuitiofthreshold states become exponentially(in the sizeN) long time. Let us suppose that
more robust increasing) imply that the functionn(p) must ~ O(N) computational time is spent at each temperagjref
monotonically increase fop e[ pg,1]. Moreover, continuity  the annealing schedulghis is what happens in natyréie
reasons tell us thab(py)=0. The fact thatw(p) is very  expect to be able to equilibrate the system only at low
small close topg, together with the fact that in numerical gnough noisdlet us say forp<py(Z)], when the magnetic
simulations we are restricted to finite values\ofallows the - fie|q in Eq. (3.3) is strong enough to single out a unique
local Monte Carlo dynamic to relax below the analytical pre-grgodic component.
dicted threshold energy. A more detailed characterization of
this effect is presently under study and will be presented in a

. S 1. Theoretical dynamical line
forthcoming publication.

The existence of metastable states can be detected within
V. THE GENERAL CHANNEL: ANALYTICAL thg replica formali;m by the so-called marginal s_tability con-
AND NUMERICAL RESULTS dition. One considers the_ saddle point equations for the
1RSB order parameter, fixing the RSB parameter 1, cf.

We considered the case of a general noisy channel usingppendix B. The dynamical temperatuFg(p) is the highest
two different approaches: a finite-temperature and a zerotemperature for which a “nontrivial” solution of the equation
temperature approach. While the first one offers a clear corexists. At this temperature, the ergodicity of the physical dy-
nection with the dynamics of the decoding-by-annealing alnamics breaks dowtat least this is what happens in infinite
gorithm, the second one gives a nice geometrical picture ofonnectivity mean-field modelsnd we are no longer able to
the situation. equilibrate the system within a@(1) physical timdi.e., an
O(N) computational timg

We looked for a solution of Eq9B3)—(B6) using the
population dynamics algorithm of RdfL9]. We checked the

Suppose you received some message encoded using“@ontriviality” of the solution found by considering the vari-
Gallager code and you want to decode it, but no one ex-
plained to you the belief propagation algorithm, cf. E@s4)
and(2.5). ®Namely, we haveP(¢g"|x°)=1—0(e™*N). This happens be-

A physicist’s idea would be the following. Write the cor- cause there is a minimu®(N) Hamming distance between dis-
responding HamiltoniarH(g), see EQ.(3.3, and run a tinct code wordg§15].

A. Finite temperature
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0.12 - ' ' ' peratures, which are noWw=1.2 andT=0.2 (plus a quench
from T=0.2 toT=0 at the end of each coolingrhis should
o1 | 1 not have any relevant effect because<912~0.6.

The important difference with respect to the BEC case is
that now we have no fixed spins: &ll spins are dynamical
variables subject to a random external field of intensity
=(1/B)arctanh(%-2p), cf. Eq.(3.3.
kNN 1 Also here, as in the case of the BEC, the energy relaxation

e oo o for p>py4 undergoes a drastic arrest when the temperature is
reduced below the dynamical transitionTgt, see Fig. 11.

Unfortunately, in this case, we are not able to calculate
analytically the threshold energy(0), butonly the dynami-
cal critical temperatur@d 4 and then the threshold energy at
the transitioney(T4), which is higher tharey(0). Thedif-

05 o oz o3 02 05 ferenceAe=e4(T4) — €4(0) is usually not very largésee,
|Y e.g., the BEC casgghut it becomes apparent whenis de-
_ . creased towardpy. Indeed forp=0.25 (Fig. 11 lefy, the

FIG. 10. The dynamical phase transition for a regular (6,5) COd*MetropoIis dynamics is still able to relax the system for tem-

0.08

g
/
P

~

0.06

e’

0.04 -

0.02

50— p— @ — —0— — 6 — —0-—0— _
yi

[cf. Eq.(3.2 with k=6 andl=5] with {=1. peratures below 4 and then it reaches an energy well below
A €4(T4). On the other hand, fqu=0.5 (Fig. 11 righy, where
ance of the distributionp(x), p(y). A€ is small, the relaxation beloW, is almost absent and the

We consider the (6,5) regular code because it has weknalytic prediction is much more accurate. Notice that for
separated statical and dynamical threshgddsand py, cf.  this case we have run a still longer annealing wita 10*:
Table I. The resulting dynamical line for the Hamiltonian the asymptotic energy is very close to that for 10° and

(3.2 with Z=1 is reported in Fig. 10. The dynamic tempera- hardly distinguishable from the analytical prediction.
ture Ty(p) drops discontinuously below a noispxg(Z): for In Fig. 12 we report the lowest energy reached by the

A i . . simulated annealing for many values gb and ~
P<Ppq(¢) the dynamical transition disappears and the system. 15 1#, 163, together with the analytic calculation for the
can be equilibrated in linear computational time down t0ihreshold energy &,
zero temperature. We gqt4(1)~0.14, which is in good
agreement with the coding theory results, cf. Table I.

B. Zero temperature

2. Numerical experiments This approach follows from a physical intuition that is

We have repeated for the BSC the same kind of simulaslightly different from that explained above. Once again we
tions already presented at the end of Sec. IV D for the BECwill formulate it algorithmically. For sake of simplicity we
We have run a set of simulated annealings for the Hamilshall refer, in this section, to the BSC. We refer to Appendix
tonian (3.3 of the (6,5 regular code. System size ¥ for more general formulas.
=12 000 and the cooling rates are the same as for the BEC, The overlap between the transmitted code word and the
the only difference being the starting and the ending temfeceived message

0.3 T . . T . 0.3 T T T . T
0.25 025 + BSC p=0.5
02 r 02 =10, —
t=107 ~
T=10°
w 0.15 - w 0.15 + t=104 ..........................
0.1 0.1 ¢ ——7" analytic threshold
=K e4(Ty)
0.05 - 1 0.05
ep(T, ep(T,
’I"{ ) Td —[('( ) Td
0 e L L 1 L 0 | 1 L ] L
0 02 04 0.6 0.8 1 12 0 0.2 04 0.6 08 1 12
T T

FIG. 11. Energy relaxation for the Hamiltonian of t&5) regular code during the simulated annealing witliICS per temperature and
1000 equidistant temperatures [i6.2,1.2. Notice that in both case@>py. The dot-dashed line is the theoretical prediction for the
paramagnetic exchange energy.
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0.18 T T T T T T T T T . 0.8
0.16 t=10, —— 1 |
BSC uly” e— 7
0.14 r T= 103 B i T
I O D — 06
0.12 a(Ta) ]
0.1} S . L ] S
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FIG. 12. Lowest energies reached by the simulated annealings.

Errors are sample to sample fluctuations. The theoretical prediction _FIG: 13'_ Metastab_le states in the random linear _code limit for
e4(T,) is computed using the results in Fig. 10 fBy(p). R=1/2: their number is exponential between the continuous and the

dashed lines. It vanishes discontinuously when the dashed line is
crossed and continuously when the continuous line is crossed. The

N
gimout= i E oingout (5.2) critical and dynamical overlaps are related to the statical and critical
=t ' noise byq, 4=1—2p.q4. In this limit py;=0 and p.= dgv(1/2)
~0.110025.

is typically g™ °“'=1—2p. Given the received message, one
can work in the subspace of all the possible configurationshe noise levep. In fact the noise level determines the sta-
which have the prescribed overlap with'dtj.e., all theg tistics of the received messag@™ The static threshold is
such that (JN)EihLlcricr?”%(l—Zp). Once this constraint the noise level at which an exponential number of code
has been impose@for instance, in a Kawasaki-like Monte words with the same overlap as the correct omge={
Carlo algorithm, one can restrict oneself to the exchange—2p) appearsZ,(0,1—2p)>0. The dynamic transition oc-
part of the Hamiltoniarn(3.2) curs where metastable states with the same overlap begin to
exist: 2 ,(e,1—2p)>0 for somee>0.

Hexetl o) = _Ekz(il...ik)o'il' Oy

1. The random linear code limit
and apply the cooling strategy already described in the pre-
ceding section.

Below the static transitiomp, there exists a unique code
word having overlap (% 2p) with the received signal. This
is exactly the transmitted ong". This means that™" is the
unique ground state df.,.{ o) in the subspace we are con-
sidering. If we are able to keep our system in equilibrium
down to T=0, the cooling procedure will finally yield the
correct answer to the decoding problem. Of course, if meta- _
stable states are encountered in this process, the time re-2(€,9)=h[(1—q)/2]+(1-R)h[€/2(1-R)]-(1—R).
quired for keeping the system in equilibrium diverges expo- (5.4)
nentially in size. '

We expect the number of such states to be exponentiallhe number of metastable states\ig (€, q) ~2V>(<D with

11 ~ ~ ~
large: 2(e,9)=2(€,q) whenX(e€,q), d.2(€,9)>0, and>(€,q)

Nus(e, ~eNZp(e.a), 53 = —x otherwise.
ws(€.dlp) ®3 In Fig. 13 we plot the region of thee(q) plane for which
wheree is the exchange energy densitis,(o)/N. Notice ~ >(€,0)>0, for R=1/2 codes. Notice that in this limit

that we emphasized the dependence of these quantities upsi€,q) does not depend on the received messalje(and,
therefore, is independent gf). As expected, we gep.

=gv(R) andpy=0.

It is quite easy to compute the complexly,(e,q) in the
limit k,l — o with the rateR=1—1/k fixed. In particular, the
zeroth-order term in a large ! expansion can be derived by
elementary methods.

Since the derivation is quite standaf82,50 we shall
limit ourselves to quoting the result. Let us define the func-
tion

100f course this is true up tO(N~?) corrections. For instance, In order to get the first nontrivial estimate for the dynami-
one can work in the space of configuratiomssuch that (:--2p  cal pointpgy, we must consider the next term in the above
—S)N<=N ,oy0?"<(1—2p+ )N, for some small numbes. expansion. This correction can be obtained within the replica

1For a related calculation in a fully connected model see Refformalism. The corresponding estimates fogr and py are
[51]. reported below for a few values &fandl:
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0.5

In the particular case of a binary erasure channel, we were
able to show that the dynamic critical point coincides exactly
with the critical noise level for an important class of decod-
ing algorithms, namely, belief propagatidcf. Sec. IV and
Appendix A). Above this threshold, metastable states of high
energy exist in an exponentially large number and they in-
hibit the decoding algorithm from converging in linear time.
The presence of such metastable states has been verified by
extensive Monte Carlo simulations: The energy at which
very slow simulated annealings get stuck is compatible with
the analytic prediction.

) , ) ) ) , , For a general model of the noisy channel, we could not
0 0.02 0.04 006 0.08 01 0.12 0.14 present a completely explicit proof of the coincidence be-

& tween the decoding threshold and the dynamical transition.
FIG. 14. The configurational entropy versus the energy for thdlowever, also for the binary symmetric channel, we have

(6,5) regular code. Symbols refer to various noise levels. From to@btained, within numerical precision, identical values for the
to bottomp=0.5,0.4,0.35,0.3,0.25,0.2,0.18,0.155. Continuous lines2lgorithmic and the statistical mechanics thresholds.

04 r

031

02r

()

give the result of a variational computati?0]. It may be worth listing a few interesting problems which

emerge from our work:

(k1 Pe pq(1) (1) We show explicitly that the identity between statistical
mechanics and algorithmic thresholds holds in general. From

(6,3) 0.097 0.071 a technical point of view, this is a surprising fact because the

(10,5) 0.108 0.060 two thresholds are obtained, respectively, within replica sym-

(14,7) 0.109 0.049 metric, cf Egs.(2.10 and (2.11, and a one-step replica-

(6,5) 0.264 0.108 symmetry-breaking-calculations.

(2) We considered message-passing and simulated anneal-
ing algorithms. Extend the above analysis to other classes of
2. The complete calculation algorithm (and, eventually, to any linear-time algorithm
The full 1RSB solution can be obtained through the popu- (3) Message-passing decoding algorithms get stuck be-
lation dynamics methodi19]. Here, as in Sec. VA1, we cause they are unable to decode some fraction of the received
focus on the example of the (6,5) code. In Fig. 14 we plotMessage, the *hard” bits, while they have been able to de-
the configurational entropy as a function of the energy of th&ode the other ones, the “easy” bits, cf. Appendix A 1. A
states along the lines of constapttogether with the corre- clolser look at this heterogeneous behavior would be very
sponding results obtained within a simple variational ap-fuitful (see Ref[54] for a first attempt
proach. The approximate treatment is in quantitative agree-
ment with the complete calculation fex ¢4, but predicts a ACKNOWLEDGMENTS
value for the threshold energy, which is larger than the cor-
rect one:ey®'>ey. Heree;*'~0.127 and almosp indepen-
dent.
Unhappily the estimate of the dynamic energy obtaine
from this curve is not very precise. Moreover, at least two
more considerations prevent us from comparing these results APPENDIX A: CALCULATIONS, BINARY ERASURE
with those of simulated annealing simulations, cf. Sec. CHANNEL
VA 2 @ In our a”’gﬁ""."”g experiments the__overlap with the |, g appendix we give the details of the replica calcu-
received message™ is free to ﬂuct_uate,(u) We cannot lation for the BEC. Notice that although we use the regular
exclude the fact that the 1RSB solution become unstable %,3) code as a generic example, all the computations are
low temperature. presented for general degree distributideg} and {v,}.

However, the pop_ulation dynamics so!ution give the e.Sti'Since the replica symmetric case can be regarded as a par-
mate py=0.155. This allows us to confirm that the point

. ) . ticular limit of the RSB one, we shall limit ourselves to de-
pq=0.139 where the decoding algorithm fails to decode, Cftailing the last one.

Table I, coincides with the point where the metastable states
appear.

It is a pleasure to thank Riccardo Zecchina who partici-
pated in the early stages of this work A.M. also thanks M.
d\/lézard and R. Zecchina for fruitful suggestifB3].

Replica symmetry breaking

VI. CONCLUSIONS AND FUTURE PERSPECTIVES The exact computation of the 1RSB free energy is a dif-
ficult task for a finite connectivity mod¢lL8]. Good results

_ In this work we have studied the dynamical phase transican be obtained from following variational ans#see Ref.
tlr?n for a large class Otl; d.|lute(fj1 spin models lg a randth field{52] for the general philosophy of the variational appraach
the main motivation being their correspondence with very NN ) ()

powerful error correcting codes. M0o)=(1-p)ds,5,+PI(c™) - - T(¢™™), (A1)
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A(0)=F(a®). . . F(gMm)y, (A2) p(X) 1 -1 L daiy))
0Ly
where g(¥ = (gle~m+1 5™ This amounts to con- (2coshgx)™ 71 1=2 i=1 (2coshgy;)
sidering a fraction of the spin@amely, those with an infinite -1
magnetic fieldl as frozen in thet 1 state, and assuming all - yi), (A7)
the other spins to be equivalent. In the-=0 limit we get =1

3,9\ N]— o[ f,f] with ) 12 v—1 1
P(Y)=@ > fV_lA;lf H dp(yi)ﬁ(y— —arctanh
J v=1 i=1 B

T . - .
ol F1= —pln(E f<g>f<g>) N vlln(z f<g>')
m o mi= T
T = X [tanhBtanhBy; - - -tanh[g’yy_l]), (A8)
=20 2 300w
v=0 T .0 I
m to wheref,_,=g,v/(pk), and
| |
Xf(gy)---flaw |, (A3) ~
e 8= [ IT dpcy| IT (2-+tanhay,)
whereg are m-component replicated spins and | m
” K +]] (1—tanh,8y-)} , (A9)
9,=2 Ck( V) P (1-p) . (A4) i=1 |
The generating function of the coefficier{ig,} is given by A= Hl dp(x;)[1+tanhgtanhgx, - - -tanhBx,]™.
g(x)=c(1—p+px). Notice that{g,} is the effective degree . (A10)

distribution of parity check node§.e., the analogous of
{ci}), once the received bits have been eliminated.
Notice that the energyA3) is invariant under a multipli-

cative rescaling Of(a’) andf(cr) We shall fix this freedom
by requiring thatz f(cr) b f(a) 1.

The constant& and() can be chosen to enforce the normal-
ization conditionfdp(x)=fdp(y)=1.

In the B—< limit, we keepmpB= u fixed and adopt the
dollowing ansatz fop(x) andp(y):

Substituting
+ o
exp( ﬁxE o ) p(x)= 2 pad(x—q),
f(g f dx —,
(o) p(X) (2c0sh3x)™ ) ) ) )
p(Y)=p+8(y—1)+pod(y)+p_6(y+1). (Al1)
i & ﬁy; Ua) Moreover, we defing . =3,-opq andp_=3qopq-
Xf(g)Ef dyp(y)—m, (A5) We finally obtain the following expression for the free
(2coshgy) energy:
we obtain Ip 5 . .
o ¢(M)=;|n{l+(e “=Dlpip-+p-p+l}
Bolo.p1= o | dp(xdp(y)(1-+tanhpxtanhgy)" . 1
_ _ e JIni 1+ (e 2#—1 +p_)”
1428 , ” 29 5 ( W(pstp-)
—=In[ — E g.nf | 11 dp(x)
k km v=0 =1 D o0
—<p+—p_>”]j—;|22 v
X(1+tanhBtanhBx;- - - tanhBx,)™ ,
I! ~“nytngtn_
0 & L I Xln[m%n mmrpop,
-2 vin fl_[ do(y)| L1 (1+tanhy,)
=2 i=1 i=1
| Xefzﬂmin(m, ,n_)} , (AlZ)
+]1I (1—tanhgy;) ] (A6)
=1
the sumX' being restricted to the integers, ,ny,n_=0
and the corresponding saddle point equations: such thatn, +ny+n_=I1. The saddle point equations are
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1 oo
P+=30 2 FaApstp )" (o —p ) T,
(A13)

1 -
p-=55 2 ftA e tp )" = (o —p)" ),

(A14)
1o (I-1)!
=—> ulB/* _—
P A |=§:2 rel n+>§n:_;no n;!'ng!n_!
X;)1+;)80;Jr}e_2#n75n++no+n_,Iflu (A15)
1 < .
Zl =2 n_>n, ;ng
(=" 5 . B
n+!n0!n_!p1+PSOPr}e 2/‘”*5n++n0+n7,|—1,
(A16)

where

1
A=1+ 5 =Dl(p.+p)"=(pr=p-)"],

(A17)
I
B,= S
n, ing.n_ Nytngtn_!
X;1+;80ﬁ17 efz;Lmin(n+ 'n7)5n++no+n7 iR
(A18)
=2 f,1A ", (A19)
v=1
1 (1—1)!
7== vIB ! —
| 22 i n+%,n7 n,!ng!n_!
Xf;:+/3802)2_972#min(n+ ’n7)5n++n0+n7 d—1-
(A20)

We look for a “glassy”(i.e., withp, ,p_>0) solution of

Egs. (A13)—(A16). Such a solution exists in some interval

pi(p)<pu<u,(p). For p<p* no physical solution exists
for any value ofu. Forp* <p<pg, 0= u.(p)<wo(p) and
¢(w) is a monotonically increasing function betweer(p)

PHYSICAL REVIEW E 66, 046120 (2002

can be computed by Legendre transformjagh(u),*? cf.
Eq. (4.8. The complexityX(€) is nonzero betweerg and
€q. At p=p. the static energys vanishes: more than one
code word(more precisely, about ejdg2(0)] code wordsis
consistent with the received message.

Beyond the factorized ansatz

The general one-step replica-symmetry-breaking order
parametef18] is

_ f dp(x)
_ f dp(y)

The saddle point equations for functional order parameters
Qlp] and Q[p] are given in the following section for a
general channel, cf. Eq&B3) and (B4).

In the preceding section we used a quasifactorized ansatz
of the form

n/m

M&):f oalsl[1

exp Bx>Y, o?
aeg

(2coshgx)™ |’

n/m

ex /Bygg aa)
A= [ pari]l

(2coshgy)™ |
(A21)

Qlpl=dlp—pol.
(A22)

Qlpl=(1-p)dlp— 6.1+ pdlp—pol,

where 4] - ] is a functional delta function, and..(x) is the
ordinary Dirac delta centered at=+c0. This ansatz does
not satisfy the saddle point equatiofB3) and (B4), but
yields very good approximate results.

Some exact resultavithin an 1RSB schemecan be ob-
tained by writing the general decomposition

Qlpl=uQdpl+(1-u) Qalpl,
Qlpl=uQd p]+(1-)Qqlpl,
whereQ{ p] andQ p] are concentrated on the subspace of

symmetric distributions[for which p(x)=p(—X), p(y)

=p(—y)], while Q[ p] andQ,[ p] have zero weight on this
subspace. Using this decomposition in E(33) and (B4),

(A23)

12The situation aroungy is more complicate than the one we
described. This is an artifact of the variational approximation we
adopted for computing the 1RSB free energy. Here is a sketch of
what happens. Ap~0.419 a maximum of$(u«), which is still
defined between 0 and,(p)<c, appears. Ap~0.424 the func-
tion ¢(u) breaks down into two branches: a smalldefined be-
tween 0 anduq(p)>0] and a largeu [defined betweem,(p) and
mo(p)<ee] continuation. This second branch has a maximum for
somew*. At p~0.427 15,u,(p)— <. This threshold can be com-
puted by studying the asymptotic problem defined by E443)—
(A16) in the limit u—. Finally, atp=py~0.429 440, the smajk

and u,(p). A physical solution exists but we cannot associ-pranch disappears.

ate with it any well-behaved complexity. Aboyg we have
0<pui(p)<pmo(p)=c and a “well-behaved” complexity

10nce again, because of the variational approximation we made
in computinge (), we obtaine;=0 abovep>p/~0.486 97.
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we get, for the BEC, a couple of equations forandu, ~ The saddle point equations are
which are identical to the replica symmetric ones, cf. Eq.
(4.3.
The meaning of this result is clear. Fpr-py the system Q[p]__ vl|f dp(h) f H DQ[p;]
decomposes into two parts. There existsage which the =
iterative algorithms are unable to decode, and which is com- . "
pletely glassy. This part is described by the functionals xolp—pyLp1, - - - pi-11] (B3)

QJp] and QJp]. The rest of the systerfthe peripheral

region can be decoded by the belief propagation algorithm -

and, physically, is strongly magnetized. This corresponds th[p]_ > CkkJ I1 DQlpi1slp—p®[p1, ... 1]l
the functionalsQ,[p] and Q.[p] (a more detailed study k k=3 =1

shows that the asymmetry of andp is, in this case, typi- (B4)
cally positive.
where [ - - -] denotes the functional delta function, and
APPENDIX B: CALCULATIONS, THE GENERAL pO[---1, pM[-- -] are defined as follows:
CHANNEL
In this appendix we give some details of the replica cal- pO(x) dp Vi)
culation for a general noisy channgle., for a general dis- _ —J A
tribution p(h) of the random fields In contrast with the (2coshBx)™ =1 (2coshgy,)™
BEC case, cf Eq9All), the local field distributions do not
have a simple form even in the zero-temperature limit. %S X—Q—y iy ) (B5)
Therefore our results are mainly based on a numerical solu- B ! I=1)
tion of the saddle point equations.
- k-1 1
L '_:Imte femperature _ o ;(k)(y):f H dpi(X;) 8|y —Earctanh
The one-step replica-symmetry-breaking ansatz is given
in Egs. (A21). Inserting in Eq.(3.5 and taking then—0
limit, we getS A, A]=ng¢[Q,Q]+0O(n?), with X[tgtg(Xq)- - ’tﬁ(xk—l)]} (B6)
o = .
#[Q,Q]= Ej DQ[P]J DQ[P]'”[J’ dP(X)f dp(y) These equations can be solved numerically using the popu-

lation dynamics algorithm of Ref19]. Some outcomes of

this approach are reported in Sec. VA 1.
><[1+tﬁ(x>tﬁ(y>]m] PP g
T - 2. Zero temperature
= 2, o] 11 pQlpi]
km &5 ] Pi In this appendix we compute the number of metastable

states having a fixed overlap with a random configurafion
K ot The dynamical and statical thresholds for the BSC can
H dpi(X)[1+tata(Xe)- - tﬁ(xk)]m] be deduced from the results of this computation, cf. Sec.
N V B. The generalization to other statistical models for the

BI'—‘ >

* ' L noisy channel is straightforwartbut slightly cumbersome
2 J H DQ[p;] from the point of view of notation
=2 - In order to study the existence of metastable states, we
[ *h m consider the constrained partition function
X<|n|f|_ pl(yl)F|+l< B lylr vy) ]> N

Z(q;0% =2 e‘ﬁHexcr@é(Nq—El U'iOUt‘Ti)’ (B7)

N I
—(Incoshgh))h+iln(l+tﬁ), (B1)
where the received bits?™" are i.i.d. quenched variables:
where we used the shorthatg{(x) =tanh(sx), tz=tanh(s), o= +1 (—1) with probability 1-p (p). We introducem
and defined “real" weakly coupled replicas of the system:

Folys, ... ,yn>ziljl [1+t5<yi>]+i[[l [1—tg(y))].

HNotice that such states are not necessarily stable with respect to
(B2) moves that change their overlap witt?""
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k
Zn(@;e™)= | a]'[l ﬁ—exp( —ng ha> In[1+ i1:[1 dpi (X)) O(— Xy - Xy)
X2 eXp{—BE Hexcl @) I 'Xk"—l]]
{(ra} a=1
| |
53,3 o] & - [ I1 0233, pe] [ T1 i

For a general channel we should look at the likelihood rather

than at the overlap. xXexd —2uligouyy - - 'yl)]] —hy,  (B12
We make the hypothesis of symmetry among tine

coupled replicas. In particular, we use the same value of the

Lagrange multiplier for all of themh,=h,/Bm. We are  where pyou=1—p for ¢®'=+1, andp,eu=p for o=

therefore led to compute —1 and
d(m;hg)=— |im1|n2m(h0-a°uf)”/m (B9)
0N ) Bo(yr, ...oyD=min > |yilsho/u+ > Iyil}-
ityjo<0 ityjo>0
where (B13)
m
”Z'm(ho;o_out): 2 exr{ —BE Heoxet{ ) The saddle point equations become in this limit
{o% i
1 0 1-1
+<h0/m>2 2 ofof|. (810 Qlpl==2, vil2 poou| 11 DQIpi]
Next we take the zero-temperature limit keepimg= u X5[p—pfrlc),u{;)1, cop-alls (B14)
fixed. With a slight change of notation, we have
me(m;hg)— wd(w;hg). The entropy of metastable states,
cf. Eqg. (5.3, is obtained as the Legendre transform of . . 1 = k—1 -
w(uiho): Qlpl== 2, ok f I Dalplolp—p®lpy, - picall
3 p(€,0)=pme—hog— pme(u;ho), (B11) (B15)

with €=d,[ud(u;ho)] andq= —dn [ mwd(u;ho)].

The replica expression fap(u;hg) is easily obtained by
taking the zero temperature limit on the results of the pre-
ceding section. The free energy redfts sake of simplicity

we write it for a regular k,I) code; the generalization is fr'?,ut(x)——f H dp,(y)exp(,ulxl /.LZ lyi I)
trivial by making use of Eq(B1)]

The functionalg(2u{ - - -1, p®[ - - -] are defined as follows:

. . n X 8(x—(ho/p)o "=y, =+~ —yi_1),
M¢[Q,Q]=|f DQ[p]f DQ[p]ln[1+f dp(x) (B16)

X f dﬁ(y)ﬁ(—xy)[e2#““““*"“)—1]] -1
5 (y) = (X —
pY(y) f L1 dpit) oy —sgrixy- - -xic-)

k
D i .
iﬂl Qlpid Xmin(L|Xq|, . . X1 ] (B17)
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